Spaces:
Sleeping
Sleeping
File size: 10,649 Bytes
c65ba42 b2ba33f 3cba93e c119679 3cba93e d4b9099 c119679 b2ba33f 3c6573c d4b9099 b2ba33f f932d05 c119679 b2ba33f 3cba93e 495b986 d4b9099 b2ba33f c119679 b2ba33f 495b986 b2ba33f 3cba93e b2ba33f 495b986 3cba93e 495b986 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 3cba93e b2ba33f 495b986 b2ba33f 495b986 b2ba33f 495b986 3cba93e 495b986 3cba93e 495b986 b2ba33f 3cba93e b2ba33f 495b986 3cba93e 495b986 3cba93e 495b986 3cba93e d4b9099 3cba93e c119679 b2ba33f 3c6573c c65ba42 495b986 b2ba33f c119679 3cba93e 495b986 3cba93e c119679 3cba93e f932d05 3cba93e f932d05 3cba93e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import multiprocessing
import concurrent.futures
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from threading import Thread
from transformers.agents import Tool, HfEngine, ReactJsonAgent
class DocumentRetrievalAndGeneration:
def __init__(self, embedding_model_name, lm_model_id, data_folder):
self.all_splits = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.gpu_index = self.create_faiss_index()
self.tokenizer, self.model = self.initialize_llm(lm_model_id)
self.retriever_tool = self.create_retriever_tool()
self.agent = self.create_agent()
def load_documents(self, folder_path):
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
all_splits = text_splitter.split_documents(documents)
print('Length of documents:', len(documents))
print("LEN of all_splits", len(all_splits))
for i in range(3):
print(all_splits[i].page_content)
return all_splits
def create_faiss_index(self):
all_texts = [split.page_content for split in self.all_splits]
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
gpu_resource = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
return gpu_index
def initialize_llm(self, model_id):
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
return tokenizer, model
def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
try:
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=1.0,
top_k=20,
temperature=0.8,
repetition_penalty=1.2,
eos_token_id=[128001, 128008, 128009],
streamer=streamer,
)
thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
return generated_text
except Exception as e:
print(f"Error in generate_response_with_timeout: {str(e)}")
return "Text generation process encountered an error"
def create_retriever_tool(self):
class RetrieverTool(Tool):
name = "retriever"
description = "Retrieves documents from the knowledge base that are semantically similar to the input query."
inputs = {
"query": {
"type": "text",
"description": "The query to perform. Use affirmative form rather than a question.",
}
}
output_type = "text"
def __init__(self, parent, **kwargs):
super().__init__(**kwargs)
self.parent = parent
def forward(self, query: str) -> str:
similarityThreshold = 1
query_embedding = self.parent.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.parent.gpu_index.search(np.array([query_embedding]), k=3)
content = ""
for idx, distance in zip(indices[0], distances[0]):
if distance <= similarityThreshold:
content += "-" * 50 + "\n"
content += self.parent.all_splits[idx].page_content + "\n"
return content
return RetrieverTool(self)
def create_agent(self):
llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-8B-Instruct")
return ReactJsonAgent(tools=[self.retriever_tool], llm_engine=llm_engine, max_iterations=4, verbose=2)
def run_agentic_rag(self, question: str) -> str:
enhanced_question = f"""Using the information in your knowledge base, accessible with the 'retriever' tool,
give a comprehensive answer to the question below.
Respond only to the question asked, be concise and relevant.
If you can't find information, try calling your retriever again with different arguments.
Make sure to cover the question completely by calling the retriever tool several times with semantically different queries.
Your queries should be in affirmative form, not questions.
Question:
{question}"""
return self.agent.run(enhanced_question)
def query_and_generate_response(self, query):
# Standard RAG
similarityThreshold = 1
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
print("Distance", distances, "indices", indices)
content = ""
filtered_results = []
for idx, distance in zip(indices[0], distances[0]):
if distance <= similarityThreshold:
filtered_results.append(idx)
for i in filtered_results:
print(self.all_splits[i].page_content)
content += "-" * 50 + "\n"
content += self.all_splits[idx].page_content + "\n"
print("CHUNK", idx)
print("Distance:", distance)
print("indices:", indices)
print(self.all_splits[idx].page_content)
print("############################")
conversation = [
{"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
{"role": "user", "content": f"""
I need you to answer my question and provide related information in a specific format.
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
Here's my question:
Query: {query}
Solution==>
"""}
]
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
start_time = datetime.now()
standard_response = self.generate_response_with_timeout(input_ids)
elapsed_time = datetime.now() - start_time
print("Generated standard response:", standard_response)
print("Time elapsed:", elapsed_time)
print("Device in use:", self.model.device)
standard_solution_text = standard_response.strip()
if "Solution:" in standard_solution_text:
standard_solution_text = standard_solution_text.split("Solution:", 1)[1].strip()
# Post-processing to remove "assistant" prefix
standard_solution_text = re.sub(r'^assistant\s*', '', standard_solution_text, flags=re.IGNORECASE)
standard_solution_text = standard_solution_text.strip()
# Agentic RAG
agentic_solution_text = self.run_agentic_rag(query)
combined_solution = f"Standard RAG Solution:\n{standard_solution_text}\n\nAgentic RAG Solution:\n{agentic_solution_text}"
return combined_solution, content
def qa_infer_gradio(self, query):
response = self.query_and_generate_response(query)
return response
if __name__ == "__main__":
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
data_folder = 'sample_embedding_folder2'
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
def launch_interface():
css_code = """
.gradio-container {
background-color: #daccdb;
}
button {
background-color: #927fc7;
color: black;
border: 1px solid black;
padding: 10px;
margin-right: 10px;
font-size: 16px;
font-weight: bold;
}
"""
EXAMPLES = [
"On which devices can the VIP and CSI2 modules operate simultaneously?",
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
]
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
css=css_code,
title="TI E2E FORUM"
)
interface.launch(debug=True)
launch_interface() |