Spaces:
Sleeping
Sleeping
File size: 6,739 Bytes
c65ba42 c119679 c65ba42 c119679 d4b9099 c119679 3c6573c d4b9099 c119679 bd811e9 d734b57 bd811e9 d734b57 0217d37 c119679 0217d37 c119679 d4b9099 d734b57 c119679 bd811e9 d734b57 bd811e9 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 d734b57 d4b9099 c119679 0217d37 c119679 7eccbd5 3c6573c c65ba42 d734b57 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import gradio as gr
import re
from threading import Thread
class MultiDocumentAgentSystem:
def __init__(self, documents_dict, model, tokenizer, embeddings):
self.model = model
self.tokenizer = tokenizer
self.embeddings = embeddings
self.document_vectors = self.create_document_vectors(documents_dict)
def create_document_vectors(self, documents_dict):
document_vectors = {}
for doc_name, content in documents_dict.items():
vectors = self.embeddings.encode(content, convert_to_tensor=True)
document_vectors[doc_name] = vectors
return document_vectors
def query(self, user_input):
query_vector = self.embeddings.encode(user_input, convert_to_tensor=True)
# Find the most similar document
most_similar_doc = max(self.document_vectors.items(),
key=lambda x: torch.cosine_similarity(query_vector, x[1], dim=0))
# Generate response using the most similar document as context
response = self.generate_response(user_input, most_similar_doc[0], most_similar_doc[1])
return response
def generate_response(self, query, doc_name, doc_vector):
prompt = f"Based on the document '{doc_name}', answer the following question: {query}"
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.model.device)
with torch.no_grad():
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1)
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
return response
class DocumentRetrievalAndGeneration:
def __init__(self, embedding_model_name, lm_model_id, data_folder):
self.documents_dict = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.tokenizer, self.model = self.initialize_llm(lm_model_id)
self.multi_doc_system = MultiDocumentAgentSystem(self.documents_dict, self.model, self.tokenizer, self.embeddings)
def load_documents(self, folder_path):
documents_dict = {}
for file_name in os.listdir(folder_path):
if file_name.endswith('.txt'):
file_path = os.path.join(folder_path, file_name)
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
documents_dict[file_name[:-4]] = content
return documents_dict
def initialize_llm(self, model_id):
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
return tokenizer, model
def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
try:
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=1.0,
top_k=20,
temperature=0.8,
repetition_penalty=1.2,
eos_token_id=self.tokenizer.eos_token_id,
streamer=streamer,
)
thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
return generated_text
except Exception as e:
print(f"Error in generate_response_with_timeout: {str(e)}")
return "Text generation process encountered an error"
def query_and_generate_response(self, query):
response = self.multi_doc_system.query(query)
return str(response), ""
def qa_infer_gradio(self, query):
response, related_queries = self.query_and_generate_response(query)
return response, related_queries
if __name__ == "__main__":
embedding_model_name = 'sentence-transformers/all-MiniLM-L6-v2'
lm_model_id = "facebook/opt-350m" # You can change this to a different open-source model
data_folder = 'sample_embedding_folder2'
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
def launch_interface():
css_code = """
.gradio-container {
background-color: #daccdb;
}
button {
background-color: #927fc7;
color: black;
border: 1px solid black;
padding: 10px;
margin-right: 10px;
font-size: 16px;
font-weight: bold;
}
"""
EXAMPLES = [
"On which devices can the VIP and CSI2 modules operate simultaneously?",
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
]
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
css=css_code,
title="TI E2E FORUM"
)
interface.launch(debug=True)
launch_interface() |