Spaces:
Sleeping
Sleeping
File size: 6,228 Bytes
77190bb 9cea9a4 77190bb 9cea9a4 77190bb 71dae17 9cea9a4 71dae17 77190bb 71dae17 9cea9a4 77190bb 9cea9a4 71dae17 77190bb 9cea9a4 77190bb 71dae17 77190bb 71dae17 77190bb 71dae17 77190bb 71dae17 9cea9a4 77190bb 9cea9a4 77190bb 9cea9a4 77190bb 71dae17 9cea9a4 71dae17 9cea9a4 77190bb 71dae17 9cea9a4 71dae17 9cea9a4 77190bb 71dae17 9cea9a4 122b45d 71dae17 77190bb 9cea9a4 77190bb 9cea9a4 77190bb 9cea9a4 77190bb e8d3c62 77190bb 9cea9a4 77190bb 9cea9a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import torch.cuda
import numpy as np
import faiss
import gradio as gr
import re
from openai import OpenAI
from langchain_community.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
class MultiAgentRAG:
def __init__(self, embedding_model_name, openai_model_id, data_folder, api_key=None):
self.use_gpu = torch.cuda.is_available()
self.all_splits = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.faiss_index = self.create_faiss_index()
self.openai_client = OpenAI(api_key=api_key or os.environ.get("OPENAI_API_KEY"))
self.openai_model_id = openai_model_id
def load_documents(self, folder_path):
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
all_splits = text_splitter.split_documents(documents)
return all_splits
def create_faiss_index(self):
all_texts = [split.page_content for split in self.all_splits]
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
try:
gpu_resource = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
return gpu_index
except:
return index
def generate_openai_response(self, messages, max_tokens=1000):
try:
response = self.openai_client.chat.completions.create(
model=self.openai_model_id,
messages=messages,
max_tokens=max_tokens,
temperature=0.8,
top_p=1.0,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].message.content
except:
return "Text generation process encountered an error"
def retrieval_agent(self, query):
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.faiss_index.search(np.array([query_embedding]), k=3)
content = ""
for idx in indices[0]:
content += self.all_splits[idx].page_content + "\n"
return content
def grading_agent(self, query, retrieved_content):
messages = [
{"role": "system", "content": "You are an expert at evaluating relevance."},
{"role": "user", "content": f"Query: {query}\nRetrieved Content:\n{retrieved_content}\nRate the relevance on a scale of 1-10."}
]
grading_response = self.generate_openai_response(messages)
match = re.search(r'\b([1-9]|10)\b', grading_response)
rating = int(match.group()) if match else 5
return rating, grading_response
def query_rewrite_agent(self, original_query):
messages = [
{"role": "system", "content": "You are an expert at rewriting queries."},
{"role": "user", "content": f"Original Query: {original_query}\nRewritten Query:"}
]
return self.generate_openai_response(messages).strip()
def generation_agent(self, query, retrieved_content):
messages = [
{"role": "system", "content": "You are a knowledgeable assistant."},
{"role": "user", "content": f"Query: {query}\nSolution==>"}
]
return self.generate_openai_response(messages)
def run_multi_agent_rag(self, query):
for _ in range(3):
retrieved_content = self.retrieval_agent(query)
relevance_score, grading_explanation = self.grading_agent(query, retrieved_content)
if relevance_score >= 7:
return self.generation_agent(query, retrieved_content), retrieved_content, grading_explanation
query = self.query_rewrite_agent(query)
return "Unable to find a relevant answer.", "", "Low relevance across all attempts."
def qa_infer_gradio(self, query):
answer, retrieved_content, grading_explanation = self.run_multi_agent_rag(query)
return answer, f"Retrieved Content:\n{retrieved_content}\n\nGrading Explanation:\n{grading_explanation}"
def launch_interface(doc_retrieval_gen):
css_code = """
.gradio-container { background-color: #daccdb; }
button { background-color: #927fc7; color: black; border: 1px solid black; padding: 10px; margin-right: 10px; font-size: 16px; font-weight: bold; }
"""
EXAMPLES = [
"On which devices can the VIP and CSI2 modules operate simultaneously?",
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
]
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
css=css_code,
title="TI E2E FORUM Multi-Agent RAG"
)
interface.launch(debug=True)
if __name__ == "__main__":
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
openai_model_id = "gpt-4-turbo"
data_folder = 'sample_embedding_folder2'
try:
multi_agent_rag = MultiAgentRAG(embedding_model_name, openai_model_id, data_folder)
launch_interface(multi_agent_rag)
except Exception as e:
print(f"Error initializing Multi-Agent RAG: {str(e)}")
|