arjunanand13's picture
Update app.py
af8f2bb verified
raw
history blame
5.23 kB
import concurrent.futures
import threading
import torch
from datetime import datetime
import json
import gradio as gr
import re
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from langchain.document_loaders import DirectoryLoader, TextLoader # Import these from langchain
from langchain.text_splitter import RecursiveCharacterTextSplitter # Import the text splitter
class DocumentRetrievalAndGeneration:
def __init__(self, embedding_model_name, lm_model_id, data_folder):
self.all_splits = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.gpu_index = self.create_faiss_index()
self.llm = self.initialize_llm(lm_model_id)
self.cancel_flag = threading.Event()
def load_documents(self, folder_path):
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
all_splits = text_splitter.split_documents(documents)
print('Length of documents:', len(documents))
print("LEN of all_splits", len(all_splits))
for i in range(5):
print(all_splits[i].page_content)
return all_splits
def create_faiss_index(self):
all_texts = [split.page_content for split in self.all_splits]
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
gpu_resource = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
return gpu_index
def initialize_llm(self, model_id):
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generate_text = pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=True,
task='text-generation',
temperature=0.6,
max_new_tokens=256,
)
return generate_text
def generate_response_with_timeout(self, model_inputs):
def target(future):
if self.cancel_flag.is_set():
return
generated_ids = self.llm.model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
if not self.cancel_flag.is_set():
future.set_result(generated_ids)
else:
future.set_exception(TimeoutError("Text generation process was canceled"))
future = concurrent.futures.Future()
thread = threading.Thread(target=target, args=(future,))
thread.start()
try:
generated_ids = future.result(timeout=60) # Timeout set to 60 seconds
return generated_ids
except concurrent.futures.TimeoutError:
self.cancel_flag.set()
raise TimeoutError("Text generation process timed out")
def qa_infer_gradio(self, query):
# Set the cancel flag to false for the new query
self.cancel_flag.clear()
try:
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=5)
content = ""
for idx in indices[0]:
content += "-" * 50 + "\n"
content += self.all_splits[idx].page_content + "\n"
prompt = f"""<s>
Here's my question:
Query: {query}
Solution:
RETURN ONLY SOLUTION. IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE"
</s>
"""
messages = [{"role": "user", "content": prompt}]
encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(self.llm.device)
start_time = datetime.now()
generated_ids = self.generate_response_with_timeout(model_inputs)
elapsed_time = datetime.now() - start_time
decoded = self.llm.tokenizer.batch_decode(generated_ids)
generated_response = decoded[0]
match = re.search(r'Solution:(.*?)</s>', generated_response, re.DOTALL | re.IGNORECASE)
if match:
solution_text = match.group(1).strip()
else:
solution_text = "NO SOLUTION AVAILABLE"
print("Generated response:", generated_response)
print("Time elapsed:", elapsed_time)
print("Device in use:", self.llm.device)
return solution_text, content
except TimeoutError:
return "timeout", content