Spaces:
Sleeping
Sleeping
File size: 8,067 Bytes
c62a6a1 db9bd14 c62a6a1 db9bd14 c62a6a1 db9bd14 0feefad c62a6a1 db9bd14 c62a6a1 db9bd14 c62a6a1 db9bd14 c62a6a1 db9bd14 c62a6a1 db9bd14 c62a6a1 db9bd14 c62a6a1 db9bd14 5da4d27 4e94fdb 5da4d27 05bd5d0 4b8982c db9bd14 c62a6a1 db9bd14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
import torch
from torch import cuda, bfloat16
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
# Load the Hugging Face token from environment
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Define stopping criteria
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_ids in stop_token_ids:
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
return True
return False
# Load the LLaMA model and tokenizer
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
# model_id = 'mistralai/Mistral-7B-Instruct-v0.3'
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
# Set quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
# Define stopping criteria
stop_list = ['\nHuman:', '\n```\n']
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
# Create text generation pipeline
generate_text = pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=True,
task='text-generation',
stopping_criteria=stopping_criteria,
temperature=0.1,
max_new_tokens=512,
repetition_penalty=1.1
)
llm = HuggingFacePipeline(pipeline=generate_text)
# Load the stored FAISS index
try:
vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}))
print("Loaded embedding successfully")
except ImportError as e:
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
raise e
# Set up the Conversational Retrieval Chain
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
chat_history = []
def format_prompt(query):
prompt = f"""
You are a knowledgeable assistant with access to a comprehensive database.
I need you to answer my question and provide related information in a specific format.
Here's what I need:
1. A brief, general response to my question based on related answers retrieved.
2. A JSON-formatted output containing:
- "question": The original question.
- "answer": The detailed answer.
- "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
- "question": The related question.
- "answer": The related answer.
Here's my question:
{query}
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
"""
return prompt
def qa_infer(query):
formatted_prompt = format_prompt(query)
result = chain({"question": formatted_prompt, "chat_history": chat_history})
for doc in result['source_documents']:
print("-"*50)
print("Retrieved Document:", doc.page_content)
print("#"*100)
print(result['answer'])
return result['answer']
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
"Can BQ25896 support I2C interface?",
"Does TDA2 vout support bt656 8-bit mode?"]
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
demo.launch()
# import os
# import torch
# from torch import cuda, bfloat16
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
# from langchain.llms import HuggingFacePipeline
# from langchain.vectorstores import FAISS
# from langchain.chains import ConversationalRetrievalChain
# import gradio as gr
# from langchain.embeddings import HuggingFaceEmbeddings
# # Load the Hugging Face token from environment
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
# # Define stopping criteria
# class StopOnTokens(StoppingCriteria):
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
# for stop_ids in stop_token_ids:
# if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
# return True
# return False
# # Load the LLaMA model and tokenizer
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
# # Set quantization configuration
# bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type='nf4',
# bnb_4bit_use_double_quant=True,
# bnb_4bit_compute_dtype=bfloat16
# )
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
# model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
# # Define stopping criteria
# stop_list = ['\nHuman:', '\n```\n']
# stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
# stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
# stopping_criteria = StoppingCriteriaList([StopOnTokens()])
# # Create text generation pipeline
# generate_text = pipeline(
# model=model,
# tokenizer=tokenizer,
# return_full_text=True,
# task='text-generation',
# stopping_criteria=stopping_criteria,
# temperature=0.1,
# max_new_tokens=512,
# repetition_penalty=1.1
# )
# llm = HuggingFacePipeline(pipeline=generate_text)
# # Load the stored FAISS index
# try:
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})
# vectorstore = FAISS.load_local('faiss_index', embeddings)
# print("Loaded embedding successfully")
# except ImportError as e:
# print("FAISS could not be imported. Make sure FAISS is installed correctly.")
# raise e
# # Set up the Conversational Retrieval Chain
# chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
# chat_history = []
# def format_prompt(query):
# prompt = f"""
# You are a knowledgeable assistant with access to a comprehensive database.
# I need you to answer my question and provide related information in a specific format.
# Here's what I need:
# 1. A brief, general response to my question based on related answers retrieved.
# 2. A JSON-formatted output containing:
# - "question": The original question.
# - "answer": The detailed answer.
# - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
# - "question": The related question.
# - "answer": The related answer.
# Here's my question:
# {query}
# Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
# """
# return prompt
# def qa_infer(query):
# formatted_prompt = format_prompt(query)
# result = chain({"question": formatted_prompt, "chat_history": chat_history})
# return result['answer']
# EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
# "Can BQ25896 support I2C interface?",
# "Does TDA2 vout support bt656 8-bit mode?"]
# demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
# demo.launch()
|