File size: 18,025 Bytes
5aefcf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
Ticket Name: TDA2: New model runs well in tidl_model_import.out.exe but abnormally in CCS and EVM

Query Text:
Part Number: TDA2 Hi, I train a new model, and runs well in in tidl_model_import.out.exe, and the result is shown in attachment. Then I run the model in EVM TIDL_OD usecase, it comes out the unexpected result.(show in attachment). At last, I run the model in CCS, and also got unexpected result. I check the trace_dump files between CCS and tidl_model_import.out.exe, and all layers are unmatched except input data layer. So could you please help to check my issue. and if prototxt and caffemodel is needed, please provide email. issueTIDL.rar Thanks Jerry

Responses:
Hi Jerry, What is the TIDL release version you are using? Please share the all the dumped outputs (traces) of import and CCS for checking the issue Thanks, Praveen

Hi Praveen, TIDL: REL.TIDL.01.01.01.00 CCS: v8.1 VISIONSDK: 3.04 Thanks, Jerry 6131.issueTIDL.rar

Hi Praveen, I try simulator my model in PC with eve_test_dl_algo.exe, and get the following results. 1 DenseConv may be failed when output channels less than 48, or stride=2, or dilate=2 as TIDL has these limits 2 But why sparseConv failed at the following situations? PC_simulator.log Layer    1 : Out Q :    12122 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.50,     0.50, Sparsity :   0.00
 Layer    2 : Out Q :    16454 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.50,     0.50, Sparsity :   0.00
 Layer    3 : Out Q :    44315 , TIDL_ConvolutionLayer, PASSED  #MMACs =    35.83,    30.19, Sparsity :  15.74
 Layer    4 : Out Q :    29847 , TIDL_ConvolutionLayer, PASSED  #MMACs =    42.47,    42.47, Sparsity :   0.00
 Layer    5 : Out Q :    18574 , TIDL_ConvolutionLayer, PASSED  #MMACs =    11.94,    11.94, Sparsity :   0.00
 Layer    6 : Out Q :    10320 , TIDL_ConvolutionLayer, PASSED  #MMACs =    84.93,    84.93, Sparsity :   0.00
 Layer    7 : Out Q :    20910 , TIDL_ConvolutionLayer, PASSED  #MMACs =    23.89,    23.89, Sparsity :   0.00
 Layer    8 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.66,     0.66, Sparsity :   0.00
 Layer    9 : Out Q :    30028 , TIDL_ConvolutionLayer, PASSED  #MMACs =    21.23,    21.23, Sparsity :   0.00
 Layer   10 : Out Q :    33360 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.99,     2.99, Sparsity :   0.00
 Layer   11 : Out Q :    20992 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   12 : Out Q :    30337 , TIDL_ConvolutionLayer, PASSED  #MMACs =    31.85,    31.85, Sparsity :   0.00
 Layer   13 : Out Q :    29768 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.99,     2.99, Sparsity :   0.00
 Layer   14 : Out Q :    21075 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   15 : Out Q :    30007 , TIDL_ConvolutionLayer, PASSED  #MMACs =    42.47,    42.47, Sparsity :   0.00
 Layer   16 : Out Q :    29477 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.99,     2.99, Sparsity :   0.00
 Layer   17 : Out Q :    21158 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   18 : Out Q :    61360 , TIDL_ConvolutionLayer, PASSED  #MMACs =   212.34,   212.34, Sparsity :   0.00
 Layer   19 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.33,     0.33, Sparsity :   0.00
 Layer   20 : Out Q :    39417 , TIDL_ConvolutionLayer, PASSED  #MMACs =    15.93,    15.93, Sparsity :   0.00
 Layer   21 : Out Q :    46384 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.12,     1.12, Sparsity :   0.00
 Layer   22 : Out Q :    46567 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   23 : Out Q :    42536 , TIDL_ConvolutionLayer, PASSED  #MMACs =    21.90,    21.90, Sparsity :   0.00
 Layer   24 : Out Q :    44216 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.12,     1.12, Sparsity :   0.00
 Layer   25 : Out Q :    44390 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   26 : Out Q :    40258 , TIDL_ConvolutionLayer, PASSED  #MMACs =    27.87,    27.87, Sparsity :   0.00
 Layer   27 : Out Q :    52020 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.12,     1.12, Sparsity :   0.00
 Layer   28 : Out Q :    44565 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   29 : Out Q :    41968 , TIDL_ConvolutionLayer, PASSED  #MMACs =    33.84,    33.84, Sparsity :   0.00
 Layer   30 : Out Q :    32649 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.12,     1.12, Sparsity :   0.00
 Layer   31 : Out Q :    32778 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   32 : Out Q :    41851 , TIDL_ConvolutionLayer, PASSED  #MMACs =    39.81,    39.81, Sparsity :   0.00
 Layer   33 : Out Q :    41670 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.12,     1.12, Sparsity :   0.00
 Layer   34 : Out Q :    32907 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   35 : Out Q :    55923 , TIDL_ConvolutionLayer, PASSED  #MMACs =   122.09,   122.09, Sparsity :   0.00
 Layer   36 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.08,     0.08, Sparsity :   0.00
 Layer   37 : Out Q :    33730 , TIDL_ConvolutionLayer, PASSED  #MMACs =     5.31,     5.31, Sparsity :   0.00
 Layer   38 : Out Q :    51053 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.37,     0.37, Sparsity :   0.00
 Layer   39 : Out Q :    51254 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   40 : Out Q :    39601 , TIDL_ConvolutionLayer, PASSED  #MMACs =     7.96,     7.96, Sparsity :   0.00
 Layer   41 : Out Q :    50233 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.37,     0.37, Sparsity :   0.00
 Layer   42 : Out Q :    50431 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   43 : Out Q :    29201 , TIDL_ConvolutionLayer, PASSED  #MMACs =    10.62,    10.62, Sparsity :   0.00
 Layer   44 : Out Q :    35166 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.37,     0.37, Sparsity :   0.00
 Layer   45 : Out Q :    35304 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   46 : Out Q :    30263 , TIDL_ConvolutionLayer, PASSED  #MMACs =    13.27,    13.27, Sparsity :   0.00
 Layer   47 : Out Q :    31795 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.37,     0.37, Sparsity :   0.00
 Layer   48 : Out Q :    31920 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   49 : Out Q :    29030 , TIDL_ConvolutionLayer, PASSED  #MMACs =    15.93,    15.93, Sparsity :   0.00
 Layer   50 : Out Q :    34302 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.37,     0.37, Sparsity :   0.00
 Layer   51 : Out Q :    32046 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   52 : Out Q :    31669 , TIDL_ConvolutionLayer, PASSED  #MMACs =    18.58,    18.58, Sparsity :   0.00
 Layer   53 : Out Q :    33290 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.37,     0.37, Sparsity :   0.00
 Layer   54 : Out Q :    32172 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   55 : Out Q :    37877 , TIDL_ConvolutionLayer, PASSED  #MMACs =    42.47,    42.47, Sparsity :   0.00
 Layer   56 : Out Q :    30049 , TIDL_ConvolutionLayer, PASSED  #MMACs =     7.96,     7.96, Sparsity :   0.00
 Layer   57 : Out Q :    40896 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.56,     0.56, Sparsity :   0.00
 Layer   58 : Out Q :    38026 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   59 : Out Q :    23376 , TIDL_ConvolutionLayer, PASSED  #MMACs =    13.93,    13.93, Sparsity :   0.00
 Layer   60 : Out Q :    40974 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.56,     0.56, Sparsity :   0.00
 Layer   61 : Out Q :    38176 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   62 : Out Q :    25187 , TIDL_ConvolutionLayer, PASSED  #MMACs =    19.91,    19.91, Sparsity :   0.00
 Layer   63 : Out Q :    34145 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.56,     0.56, Sparsity :   0.00
 Layer   64 : Out Q :    34279 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   65 : Out Q :    29118 , TIDL_ConvolutionLayer, PASSED  #MMACs =    25.88,    25.88, Sparsity :   0.00
 Layer   66 : Out Q :    35737 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.56,     0.56, Sparsity :   0.00
 Layer   67 : Out Q :    34414 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   68 : Out Q :    14894 , TIDL_ConvolutionLayer, PASSED  #MMACs =    42.47,    42.47, Sparsity :   0.00
 Layer   69 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.08,     0.08, Sparsity :   0.00
 Layer   70 : Out Q :    27848 , TIDL_ConvolutionLayer, PASSED  #MMACs =    10.62,    10.62, Sparsity :   0.00
 Layer   71 : Out Q :    14953 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   72 : Out Q :    23194 , TIDL_ConvolutionLayer, PASSED  #MMACs =    10.62,    10.62, Sparsity :   0.00
 Layer   73 : Out Q :    44331 , Failing at    0,    0,    0,    0 ref,out = 1,255
TIDL_ConvolutionLayer, FAILED!!!!!!  #MMACs =     0.19,     0.19, Sparsity :   0.00
 Layer   74 : Out Q :    18410 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.65,     2.65, Sparsity :   0.00
 Layer   75 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.04,     0.04, Sparsity :   0.00
 Layer   76 : Out Q :    13003 , TIDL_ConvolutionLayer, PASSED  #MMACs =     5.31,     5.31, Sparsity :   0.00
 Layer   77 : Out Q :    13054 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   78 : Out Q :    21503 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.65,     2.65, Sparsity :   0.00
 Layer   79 : Out Q :    52782 , Failing at    0,    0,    0,    4 ref,out = 26,0
TIDL_ConvolutionLayer, FAILED!!!!!!  #MMACs =     0.05,     0.05, Sparsity :   0.00
 Layer   80 : Out Q :     9095 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.74,     0.74, Sparsity :   0.00
 Layer   81 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   82 : Out Q :     9817 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.47,     1.47, Sparsity :   0.00
 Layer   83 : Out Q :     9131 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   84 : Out Q :    37538 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.74,     0.74, Sparsity :   0.00
 Layer   85 : Out Q :    87882 , Failing at    0,    0,    0,    1 ref,out = 0,255
TIDL_ConvolutionLayer, FAILED!!!!!!  #MMACs =     0.02,     0.02, Sparsity :   0.00
 Layer   86 : Out Q :    29973 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.25,     0.25, Sparsity :   0.00
 Layer   87 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   88 : Out Q :    16981 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.49,     0.49, Sparsity :   0.00
 Layer   89 : Out Q :    17048 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   90 : Out Q :    65965 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.25,     0.25, Sparsity :   0.00
 Layer   91 : Out Q :   111900 , Failing at    0,    0,    0,    0 ref,out = 47,255
TIDL_ConvolutionLayer, FAILED!!!!!!  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   92 : Out Q :    53030 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.10,     0.10, Sparsity :   0.00
 Layer   93 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   94 : Out Q :    44532 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.20,     0.20, Sparsity :   0.00
 Layer   95 : Out Q :    44707 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer   96 : Out Q :    86672 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.10,     0.10, Sparsity :   0.00
 Layer   97 : Out Q :   130284 , Failing at    0,    0,    0,    0 ref,out = 40,255
TIDL_ConvolutionLayer, FAILED!!!!!!  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   98 : Out Q :    80025 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.03,     0.03, Sparsity :   0.00
 Layer   99 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  100 : Out Q :    56297 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.07,     0.07, Sparsity :   0.00
 Layer  101 : Out Q :    56519 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer  102 : Out Q :     7137 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.65,     2.65, Sparsity :   0.00
 Layer  103 : Out Q :     3821 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.09,     0.09, Sparsity :   0.00
 Layer  104 :TIDL_FlattenLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer  105 : Out Q :    10029 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.65,     2.65, Sparsity :   0.00
 Layer  106 : Out Q :     5602 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.09,     0.09, Sparsity :   0.00
 Layer  107 :TIDL_FlattenLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer  108 : Out Q :     7778 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.00,     1.00, Sparsity :   0.00
 Layer  109 : Out Q :    10903 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.03,     0.03, Sparsity :   0.00
 Layer  110 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  111 : Out Q :     5431 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.00,     1.00, Sparsity :   0.00
 Layer  112 : Out Q :     4815 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.03,     0.03, Sparsity :   0.00
 Layer  113 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  114 : Out Q :     7993 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.28,     0.28, Sparsity :   0.00
 Layer  115 : Out Q :    10285 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer  116 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  117 : Out Q :     5102 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.28,     0.28, Sparsity :   0.00
 Layer  118 : Out Q :     4925 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer  119 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  120 : Out Q :     9731 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.09,     0.09, Sparsity :   0.00
 Layer  121 : Out Q :    10006 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  122 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  123 : Out Q :     7466 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.09,     0.09, Sparsity :   0.00
 Layer  124 : Out Q :     6931 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  125 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  126 : Out Q :    16688 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.04,     0.04, Sparsity :   0.00
 Layer  127 : Out Q :    14009 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  128 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  129 : Out Q :    12677 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.04,     0.04, Sparsity :   0.00
 Layer  130 : Out Q :     8489 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  131 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  132 : Out Q :    33500 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer  133 : Out Q :    17943 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  134 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  135 : Out Q :    12216 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer  136 : Out Q :     7388 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  137 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer  138 : Out Q :     3836 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer  139 : Out Q :     4834 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity : -nan(ind)
 Layer  140 : #MMACs =     0.00,     0.00, Sparsity :   0.00
End of config list found !

Hi Jerry, For these conv layers, the number of groups are equal to number of output channels and for this case we had a separate flow(depth wise separable conv flow) and in this flow there is no support for dilation >1, so for these conv layers you can have dilation = 1 or decrease number of groups so that it will not take this flow. Thanks, Praveen

Hi Praveen, 1. In depthwise separable flow, both stride>1 and dilation>1 are not supported, right? 2. If I want to stride>1 and dilation>1 are supported in my network, the conv layer must run in sparse conv flow(conv groups != output channels and convKernelType=0). Is it riht? Thanks for your help. Best regards, Jerry

Hi Jerry, 1. No, only dilation>1 is not supported, but stride = 1 or 2 is supported. 2. Yes, you are right. Thanks, Praveen

Hi Praveen, I will try it after the long vocation. Thank you very much. Best regards, Jerry

Hi Praveen, I have tried the following cases: 1. group = num_out, stride=1, dilation=1, conv2dKernelType=0 => fail 2. group = num_out, stride=1, dilation=1, conv2dKernelType=1 => pass 3. group = num_out, stride=2, dilation=1, conv2dKernelType=0 => fail 4. group = num_out, stride=2, dilation=1, conv2dKernelType=1 => fail So If conv layer works well in depthwise separable flow => group=num_out, stride=1, conv2dKernelType=1 ? Best regards, Jerry

Hi Jerry, Yes. Thanks, Praveen