Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from torch import cuda, bfloat16 | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList | |
from langchain.llms import HuggingFacePipeline | |
from langchain.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
import gradio as gr | |
from langchain.embeddings import HuggingFaceEmbeddings | |
# Load the Hugging Face token from environment | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# Define stopping criteria | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
for stop_ids in stop_token_ids: | |
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all(): | |
return True | |
return False | |
# Load the LLaMA model and tokenizer | |
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct' | |
# model_id = 'mistralai/Mistral-7B-Instruct-v0.3' | |
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' | |
# Set quantization configuration | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type='nf4', | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config) | |
# Define stopping criteria | |
stop_list = ['\nHuman:', '\n```\n'] | |
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list] | |
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids] | |
stopping_criteria = StoppingCriteriaList([StopOnTokens()]) | |
# Create text generation pipeline | |
generate_text = pipeline( | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
task='text-generation', | |
stopping_criteria=stopping_criteria, | |
temperature=0.1, | |
max_new_tokens=512, | |
repetition_penalty=1.1 | |
) | |
llm = HuggingFacePipeline(pipeline=generate_text) | |
# Load the stored FAISS index | |
try: | |
vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})) | |
print("Loaded embedding successfully") | |
except ImportError as e: | |
print("FAISS could not be imported. Make sure FAISS is installed correctly.") | |
raise e | |
# Set up the Conversational Retrieval Chain | |
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True) | |
chat_history = [] | |
def format_prompt(query): | |
prompt = f""" | |
You are a knowledgeable assistant with access to a comprehensive database. | |
I need you to answer my question and provide related information in a specific format. | |
Here's what I need: | |
1. A brief, general response to my question based on related answers retrieved. | |
2. A JSON-formatted output containing: | |
- "question": The original question. | |
- "answer": The detailed answer. | |
- "related_questions": A list of related questions and their answers, each as a dictionary with the keys: | |
- "question": The related question. | |
- "answer": The related answer. | |
Here's my question: | |
{query} | |
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point. | |
""" | |
return prompt | |
def qa_infer(query): | |
formatted_prompt = format_prompt(query) | |
result = chain({"question": formatted_prompt, "chat_history": chat_history}) | |
for doc in result['source_documents']: | |
print("-"*50) | |
print("Retrieved Document:", doc.page_content) | |
print("#"*100) | |
print(result['answer']) | |
return result['answer'] | |
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", | |
"Can BQ25896 support I2C interface?", | |
"Does TDA2 vout support bt656 8-bit mode?"] | |
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text") | |
demo.launch() | |
# import os | |
# import torch | |
# from torch import cuda, bfloat16 | |
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList | |
# from langchain.llms import HuggingFacePipeline | |
# from langchain.vectorstores import FAISS | |
# from langchain.chains import ConversationalRetrievalChain | |
# import gradio as gr | |
# from langchain.embeddings import HuggingFaceEmbeddings | |
# # Load the Hugging Face token from environment | |
# HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# # Define stopping criteria | |
# class StopOnTokens(StoppingCriteria): | |
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
# for stop_ids in stop_token_ids: | |
# if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all(): | |
# return True | |
# return False | |
# # Load the LLaMA model and tokenizer | |
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct' | |
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' | |
# # Set quantization configuration | |
# bnb_config = BitsAndBytesConfig( | |
# load_in_4bit=True, | |
# bnb_4bit_quant_type='nf4', | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_compute_dtype=bfloat16 | |
# ) | |
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) | |
# model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config) | |
# # Define stopping criteria | |
# stop_list = ['\nHuman:', '\n```\n'] | |
# stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list] | |
# stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids] | |
# stopping_criteria = StoppingCriteriaList([StopOnTokens()]) | |
# # Create text generation pipeline | |
# generate_text = pipeline( | |
# model=model, | |
# tokenizer=tokenizer, | |
# return_full_text=True, | |
# task='text-generation', | |
# stopping_criteria=stopping_criteria, | |
# temperature=0.1, | |
# max_new_tokens=512, | |
# repetition_penalty=1.1 | |
# ) | |
# llm = HuggingFacePipeline(pipeline=generate_text) | |
# # Load the stored FAISS index | |
# try: | |
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}) | |
# vectorstore = FAISS.load_local('faiss_index', embeddings) | |
# print("Loaded embedding successfully") | |
# except ImportError as e: | |
# print("FAISS could not be imported. Make sure FAISS is installed correctly.") | |
# raise e | |
# # Set up the Conversational Retrieval Chain | |
# chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True) | |
# chat_history = [] | |
# def format_prompt(query): | |
# prompt = f""" | |
# You are a knowledgeable assistant with access to a comprehensive database. | |
# I need you to answer my question and provide related information in a specific format. | |
# Here's what I need: | |
# 1. A brief, general response to my question based on related answers retrieved. | |
# 2. A JSON-formatted output containing: | |
# - "question": The original question. | |
# - "answer": The detailed answer. | |
# - "related_questions": A list of related questions and their answers, each as a dictionary with the keys: | |
# - "question": The related question. | |
# - "answer": The related answer. | |
# Here's my question: | |
# {query} | |
# Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point. | |
# """ | |
# return prompt | |
# def qa_infer(query): | |
# formatted_prompt = format_prompt(query) | |
# result = chain({"question": formatted_prompt, "chat_history": chat_history}) | |
# return result['answer'] | |
# EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", | |
# "Can BQ25896 support I2C interface?", | |
# "Does TDA2 vout support bt656 8-bit mode?"] | |
# demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text") | |
# demo.launch() | |