Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
18 |
from langchain.embeddings import HuggingFaceEmbeddings
|
19 |
from langchain.vectorstores import FAISS
|
20 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
21 |
|
22 |
# Login to Hugging Face using a token
|
23 |
# huggingface_hub.login(HF_TOKEN)
|
@@ -38,12 +39,37 @@ device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
|
38 |
# bnb_4bit_compute_dtype=bfloat16
|
39 |
# )
|
40 |
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct",token=HF_TOKEN)
|
42 |
-
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto",token=HF_TOKEN) # to("cuda:0")
|
43 |
-
terminators = [
|
44 |
-
|
45 |
-
|
46 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
"""
|
49 |
Setting up the stop list to define stopping criteria.
|
|
|
18 |
from langchain.embeddings import HuggingFaceEmbeddings
|
19 |
from langchain.vectorstores import FAISS
|
20 |
from langchain.chains import ConversationalRetrievalChain
|
21 |
+
from huggingface_hub import InferenceClient
|
22 |
|
23 |
# Login to Hugging Face using a token
|
24 |
# huggingface_hub.login(HF_TOKEN)
|
|
|
39 |
# bnb_4bit_compute_dtype=bfloat16
|
40 |
# )
|
41 |
|
42 |
+
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct",token=HF_TOKEN)
|
43 |
+
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto",token=HF_TOKEN) # to("cuda:0")
|
44 |
+
# terminators = [
|
45 |
+
# tokenizer.eos_token_id,
|
46 |
+
# tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
47 |
+
# ]
|
48 |
+
|
49 |
+
|
50 |
+
model_config = transformers.AutoConfig.from_pretrained(
|
51 |
+
self.model_id,
|
52 |
+
# use_auth_token=hf_auth
|
53 |
+
)
|
54 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
55 |
+
self.model_id,
|
56 |
+
trust_remote_code=True,
|
57 |
+
config=model_config,
|
58 |
+
quantization_config=bnb_config,
|
59 |
+
# use_auth_token=hf_auth
|
60 |
+
)
|
61 |
+
model.eval()
|
62 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
63 |
+
self.model_id,
|
64 |
+
# use_auth_token=hf_auth
|
65 |
+
)
|
66 |
+
generate_text = transformers.pipeline(
|
67 |
+
model=self.model, tokenizer=self.tokenizer,
|
68 |
+
return_full_text=True,
|
69 |
+
task='text-generation',
|
70 |
+
temperature=0.01,
|
71 |
+
max_new_tokens=512
|
72 |
+
)
|
73 |
|
74 |
"""
|
75 |
Setting up the stop list to define stopping criteria.
|