Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import cuda, bfloat16
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
4 |
+
from langchain.llms import HuggingFacePipeline
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
import gradio as gr
|
8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Load the Hugging Face token from environment
|
12 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
13 |
+
|
14 |
+
# Define stopping criteria
|
15 |
+
class StopOnTokens(StoppingCriteria):
|
16 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
17 |
+
for stop_ids in stop_token_ids:
|
18 |
+
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
19 |
+
return True
|
20 |
+
return False
|
21 |
+
|
22 |
+
# Load the LLaMA model and tokenizer
|
23 |
+
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
24 |
+
# model_id= "meta-llama/Llama-2-7b-chat-hf"
|
25 |
+
model_id="mistralai/Mistral-7B-Instruct-v0.2"
|
26 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
27 |
+
|
28 |
+
# Set quantization configuration
|
29 |
+
bnb_config = BitsAndBytesConfig(
|
30 |
+
load_in_4bit=True,
|
31 |
+
bnb_4bit_quant_type='nf4',
|
32 |
+
bnb_4bit_use_double_quant=True,
|
33 |
+
bnb_4bit_compute_dtype=bfloat16
|
34 |
+
)
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
38 |
+
|
39 |
+
# Define stopping criteria
|
40 |
+
stop_list = ['\nHuman:', '\n```\n']
|
41 |
+
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
42 |
+
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
43 |
+
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
44 |
+
|
45 |
+
# Create text generation pipeline
|
46 |
+
generate_text = pipeline(
|
47 |
+
model=model,
|
48 |
+
tokenizer=tokenizer,
|
49 |
+
return_full_text=True,
|
50 |
+
task='text-generation',
|
51 |
+
# stopping_criteria=stopping_criteria,
|
52 |
+
temperature=0.1,
|
53 |
+
max_new_tokens=2048,
|
54 |
+
# repetition_penalty=1.1
|
55 |
+
)
|
56 |
+
|
57 |
+
llm = HuggingFacePipeline(pipeline=generate_text)
|
58 |
+
|
59 |
+
# Load the stored FAISS index
|
60 |
+
try:
|
61 |
+
vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}))
|
62 |
+
print("Loaded embedding successfully")
|
63 |
+
except ImportError as e:
|
64 |
+
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
65 |
+
raise e
|
66 |
+
|
67 |
+
# Set up the Conversational Retrieval Chain
|
68 |
+
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
69 |
+
|
70 |
+
chat_history = []
|
71 |
+
|
72 |
+
def format_prompt(query):
|
73 |
+
prompt=f"""
|
74 |
+
You are a knowledgeable assistant with access to a comprehensive database.
|
75 |
+
I need you to answer my question and provide related information in a specific format.
|
76 |
+
I have provided four relatable json chunks , choose the most suitable chunks for answering the query
|
77 |
+
Here's what I need:
|
78 |
+
A brief, general response to my question based on related json chunks retrieved.
|
79 |
+
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
80 |
+
|
81 |
+
Here's my question:
|
82 |
+
{query}
|
83 |
+
|
84 |
+
The format I want answer in
|
85 |
+
user_query ==> query
|
86 |
+
response ==>
|
87 |
+
"""
|
88 |
+
# prompt = f"""
|
89 |
+
# You are a knowledgeable assistant with access to a comprehensive database.
|
90 |
+
# I need you to answer my question and provide related information in a specific format.
|
91 |
+
# Here's what I need:
|
92 |
+
# A brief, general response to my question based on related answers retrieved.
|
93 |
+
# Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
94 |
+
|
95 |
+
# A JSON-formatted output containing: ALL SOURCE DOCUMENTS
|
96 |
+
# - "question": The ticketName
|
97 |
+
# - "answer": The Responses
|
98 |
+
# Here's my question:
|
99 |
+
# {query}
|
100 |
+
# """
|
101 |
+
|
102 |
+
# - "related_questions": A list of related questions and their answers, each as a dictionary with the keys. Consider all source documents:
|
103 |
+
# - "question": The related question.
|
104 |
+
# - "answer": The related answer.
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# Example 1:
|
109 |
+
# {{
|
110 |
+
# "question": "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
111 |
+
# "answer": "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
|
112 |
+
# "related_questions": [
|
113 |
+
# {{
|
114 |
+
# "question": "Can you provide MLBP documentation on TDA2?",
|
115 |
+
# "answer": "MLB is documented for DRA devices in the TRM book, chapter 24.12."
|
116 |
+
# }},
|
117 |
+
# {{
|
118 |
+
# "question": "Hi, could you share me the TDA2x documents about Security(SPRUHS7) and Cryptographic(SPRUHS8) addendums?",
|
119 |
+
# "answer": "Most of TDA2 documents are on ti.com under the product folder."
|
120 |
+
# }},
|
121 |
+
# {{
|
122 |
+
# "question": "Is any one can provide us a way to access CDDS for nessary docs?",
|
123 |
+
# "answer": "Which document are you looking for?"
|
124 |
+
# }},
|
125 |
+
# {{
|
126 |
+
# "question": "What can you tell me about the TDA2 and TDA3 processors? Can they / do they run Linux?",
|
127 |
+
# "answer": "We have moved your post to the appropriate forum."
|
128 |
+
# }}
|
129 |
+
# ]
|
130 |
+
# }}
|
131 |
+
|
132 |
+
# Final Answer: To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.
|
133 |
+
|
134 |
+
# Example 2:
|
135 |
+
# {{
|
136 |
+
# "question": "Can BQ25896 support I2C interface?",
|
137 |
+
# "answer": "Yes, the BQ25896 charger supports the I2C interface for communication.",
|
138 |
+
# "related_questions": [
|
139 |
+
# {{
|
140 |
+
# "question": "What are the main features of BQ25896?",
|
141 |
+
# "answer": "The BQ25896 features include high-efficiency, fast charging capability, and a wide input voltage range."
|
142 |
+
# }},
|
143 |
+
# {{
|
144 |
+
# "question": "How to configure the BQ25896 for USB charging?",
|
145 |
+
# "answer": "To configure the BQ25896 for USB charging, set the input current limit and the charging current via I2C registers."
|
146 |
+
# }}
|
147 |
+
# ]
|
148 |
+
# }}
|
149 |
+
|
150 |
+
# Final Answer: Yes, the BQ25896 charger supports the I2C interface for communication.
|
151 |
+
|
152 |
+
# """
|
153 |
+
|
154 |
+
|
155 |
+
return prompt
|
156 |
+
|
157 |
+
|
158 |
+
def qa_infer(query):
|
159 |
+
content = ""
|
160 |
+
formatted_prompt = format_prompt(query)
|
161 |
+
result = chain({"question": formatted_prompt, "chat_history": chat_history})
|
162 |
+
for doc in result['source_documents']:
|
163 |
+
content += "-" * 50 + "\n"
|
164 |
+
content += doc.page_content + "\n"
|
165 |
+
print(content)
|
166 |
+
print("#" * 100)
|
167 |
+
print(result['answer'])
|
168 |
+
# return content , result['answer']
|
169 |
+
|
170 |
+
|
171 |
+
# Save the output to a file
|
172 |
+
output_file = "output.txt"
|
173 |
+
with open(output_file, "w") as f:
|
174 |
+
f.write("Query:\n")
|
175 |
+
f.write(query + "\n\n")
|
176 |
+
f.write("Answer:\n")
|
177 |
+
f.write(result['answer'] + "\n\n")
|
178 |
+
f.write("Source Documents:\n")
|
179 |
+
f.write(content + "\n")
|
180 |
+
|
181 |
+
# Return the content and answer along with the download link
|
182 |
+
download_link = f'<a href="file/{output_file}" download>Download Output File</a>'
|
183 |
+
return content, result['answer'], download_link
|
184 |
+
|
185 |
+
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
186 |
+
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
187 |
+
"Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."]
|
188 |
+
|
189 |
+
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=[gr.Textbox(label="RELATED QUERIES"), gr.Textbox(label="SOLUTION"), gr.HTML()])#,outputs="text")
|
190 |
+
demo.launch()
|
191 |
+
|