Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Commit
•
c62a6a1
1
Parent(s):
f573b86
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torch import cuda, bfloat16
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
5 |
+
from langchain.llms import HuggingFacePipeline
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
import gradio as gr
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
from sentence_transformers import CrossEncoder
|
11 |
+
|
12 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
13 |
+
|
14 |
+
class StopOnTokens(StoppingCriteria):
|
15 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
16 |
+
for stop_ids in stop_token_ids:
|
17 |
+
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
18 |
+
return True
|
19 |
+
return False
|
20 |
+
|
21 |
+
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
22 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
23 |
+
|
24 |
+
bnb_config = BitsAndBytesConfig(
|
25 |
+
load_in_4bit=True,
|
26 |
+
bnb_4bit_quant_type='nf4',
|
27 |
+
bnb_4bit_use_double_quant=True,
|
28 |
+
bnb_4bit_compute_dtype=bfloat16
|
29 |
+
)
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
33 |
+
|
34 |
+
stop_list = ['\nHuman:', '\n```\n']
|
35 |
+
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
36 |
+
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
37 |
+
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
38 |
+
|
39 |
+
generate_text = pipeline(
|
40 |
+
model=model,
|
41 |
+
tokenizer=tokenizer,
|
42 |
+
return_full_text=True,
|
43 |
+
task='text-generation',
|
44 |
+
stopping_criteria=stopping_criteria,
|
45 |
+
temperature=0.1,
|
46 |
+
max_new_tokens=512,
|
47 |
+
repetition_penalty=1.1
|
48 |
+
)
|
49 |
+
|
50 |
+
llm = HuggingFacePipeline(pipeline=generate_text)
|
51 |
+
|
52 |
+
"""Load the stored FAISS index"""
|
53 |
+
try:
|
54 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})
|
55 |
+
vectorstore = FAISS.load_local('faiss_index', embeddings)
|
56 |
+
print("Loaded embeddings from FAISS Index successfully")
|
57 |
+
except ImportError as e:
|
58 |
+
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
59 |
+
raise e
|
60 |
+
|
61 |
+
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
62 |
+
|
63 |
+
chat_history = []
|
64 |
+
|
65 |
+
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
66 |
+
|
67 |
+
def format_prompt(query):
|
68 |
+
prompt = f"""
|
69 |
+
You are a knowledgeable assistant with access to a comprehensive database.
|
70 |
+
I need you to answer my question and provide related information in a specific format.
|
71 |
+
Here's what I need:
|
72 |
+
1. A brief, general response to my question based on related answers retrieved.
|
73 |
+
2. A JSON-formatted output containing:
|
74 |
+
- "question": The original question.
|
75 |
+
- "answer": The detailed answer.
|
76 |
+
- "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
|
77 |
+
- "question": The related question.
|
78 |
+
- "answer": The related answer.
|
79 |
+
Here's my question:
|
80 |
+
{query}
|
81 |
+
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
82 |
+
"""
|
83 |
+
return prompt
|
84 |
+
|
85 |
+
def qa_infer(query):
|
86 |
+
formatted_prompt = format_prompt(query)
|
87 |
+
results = chain({"question": formatted_prompt, "chat_history": chat_history})
|
88 |
+
|
89 |
+
documents = results['source_documents']
|
90 |
+
query_document_pairs = [[query, doc.page_content] for doc in documents]
|
91 |
+
scores = reranker.predict(query_document_pairs)
|
92 |
+
|
93 |
+
"""Sort documents based on the re-ranker scores"""
|
94 |
+
ranked_docs = sorted(zip(scores, documents), key=lambda x: x[0], reverse=True)
|
95 |
+
|
96 |
+
"""Extract the best document"""
|
97 |
+
best_doc = ranked_docs[0][1].page_content if ranked_docs else ""
|
98 |
+
|
99 |
+
return best_doc
|
100 |
+
|
101 |
+
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
102 |
+
"Can BQ25896 support I2C interface?",
|
103 |
+
"Does TDA2 vout support bt656 8-bit mode?"]
|
104 |
+
|
105 |
+
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
|
106 |
+
demo.launch()
|