Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Commit
•
f785793
1
Parent(s):
9233424
Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,100 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from torch import cuda, bfloat16
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
5 |
-
from langchain.llms import HuggingFacePipeline
|
6 |
from langchain.vectorstores import FAISS
|
7 |
-
from
|
|
|
|
|
|
|
|
|
|
|
8 |
import gradio as gr
|
9 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
-
import os
|
11 |
|
12 |
-
class
|
13 |
-
def __init__(self):
|
14 |
-
self.
|
15 |
-
self.
|
16 |
-
self.
|
17 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
load_in_4bit=True,
|
19 |
-
bnb_4bit_quant_type='nf4',
|
20 |
bnb_4bit_use_double_quant=True,
|
21 |
-
|
|
|
22 |
)
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
self.generate_text = pipeline(
|
31 |
-
model=self.model,
|
32 |
-
tokenizer=self.tokenizer,
|
33 |
return_full_text=True,
|
34 |
task='text-generation',
|
35 |
-
temperature=0.
|
36 |
max_new_tokens=2048,
|
37 |
)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
print("Loaded embedding successfully")
|
44 |
-
except ImportError as e:
|
45 |
-
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
46 |
-
raise e
|
47 |
-
|
48 |
-
self.chain = ConversationalRetrievalChain.from_llm(self.llm, self.vectorstore.as_retriever(), return_source_documents=True)
|
49 |
-
self.chat_history = []
|
50 |
-
|
51 |
-
class StopOnTokens(StoppingCriteria):
|
52 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
53 |
-
for stop_ids in self.stop_token_ids:
|
54 |
-
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
55 |
-
return True
|
56 |
-
return False
|
57 |
-
|
58 |
-
def format_prompt(self, query):
|
59 |
-
prompt=f"""
|
60 |
-
You are a knowledgeable assistant with access to a comprehensive database.
|
61 |
-
I need you to answer my question and provide related information in a specific format.
|
62 |
-
I have provided four relatable json files , choose the most suitable chunks for answering the query
|
63 |
-
Here's what I need:
|
64 |
-
Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
65 |
-
|
66 |
-
Here's my question:
|
67 |
-
Query:{query}
|
68 |
-
Solution==>
|
69 |
-
Example1
|
70 |
-
Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
71 |
-
Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
|
72 |
-
|
73 |
-
Example2
|
74 |
-
Query: "Can BQ25896 support I2C interface?",
|
75 |
-
Solution: "Yes, the BQ25896 charger supports the I2C interface for communication.",
|
76 |
-
"""
|
77 |
-
return prompt
|
78 |
|
79 |
-
def qa_infer(self, query):
|
80 |
content = ""
|
81 |
-
|
82 |
-
result = self.chain({"question": formatted_prompt, "chat_history": self.chat_history})
|
83 |
-
for doc in result['source_documents']:
|
84 |
content += "-" * 50 + "\n"
|
85 |
-
content +=
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
css_code = """
|
104 |
.gradio-container {
|
105 |
background-color: #daccdb;
|
@@ -119,8 +114,6 @@ class Chatbot:
|
|
119 |
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
120 |
"Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."]
|
121 |
|
122 |
-
|
123 |
-
|
124 |
file_path = "ticketNames.txt"
|
125 |
|
126 |
# Read the file content
|
@@ -129,43 +122,19 @@ class Chatbot:
|
|
129 |
ticket_names = json.loads(content)
|
130 |
dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
|
131 |
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
# tab2.outputs = dummy_outputs
|
139 |
-
|
140 |
-
gr.TabbedInterface([tab1, tab2],["Textbox Input", "FAQs"],title="TI E2E FORUM",css=css_code).launch(debug=True)
|
141 |
-
|
142 |
-
# Instantiate and launch the chatbot
|
143 |
-
chatbot = Chatbot()
|
144 |
-
chatbot.launch_interface()
|
145 |
-
|
146 |
-
"""Single Tab Input Inference"""
|
147 |
-
|
148 |
-
# def launch_interface(self):
|
149 |
-
# css_code = """
|
150 |
-
# .gradio-container {
|
151 |
-
# background-color: #daccdb;
|
152 |
-
# }
|
153 |
-
|
154 |
-
# /* Button styling for all buttons */
|
155 |
-
# button {
|
156 |
-
# background-color: #927fc7; /* Default color for all other buttons */
|
157 |
-
# color: black;
|
158 |
-
# border: 1px solid black;
|
159 |
-
# padding: 10px;
|
160 |
-
# margin-right: 10px;
|
161 |
-
# font-size: 16px; /* Increase font size */
|
162 |
-
# font-weight: bold; /* Make text bold */
|
163 |
-
# }
|
164 |
-
|
165 |
-
# """
|
166 |
-
# EXAMPLES = ["TDA4 product planning and datasheet release progress? ",
|
167 |
-
# "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
168 |
-
# "Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."]
|
169 |
-
|
170 |
-
# demo = gr.Interface(fn=self.qa_infer, inputs=[gr.Textbox(label="QUERY", placeholder ="Enter your query here")], allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES"), gr.HTML()], css=css_code)
|
171 |
-
# demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
from langchain.document_loaders import TextLoader, DirectoryLoader
|
|
|
|
|
|
|
3 |
from langchain.vectorstores import FAISS
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import faiss
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
|
9 |
+
from datetime import datetime
|
10 |
import gradio as gr
|
|
|
|
|
11 |
|
12 |
+
class DocumentRetrievalAndGeneration:
|
13 |
+
def __init__(self, embedding_model_name, lm_model_id, data_folder, faiss_index_path):
|
14 |
+
self.documents = self.load_documents(data_folder)
|
15 |
+
self.embeddings = SentenceTransformer(embedding_model_name)
|
16 |
+
self.gpu_index = self.load_faiss_index(faiss_index_path)
|
17 |
+
self.llm = self.initialize_llm(lm_model_id)
|
18 |
+
|
19 |
+
def load_documents(self, folder_path):
|
20 |
+
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
|
21 |
+
documents = loader.load()
|
22 |
+
print('Length of documents:', len(documents))
|
23 |
+
return documents
|
24 |
+
|
25 |
+
def load_faiss_index(self, faiss_index_path):
|
26 |
+
cpu_index = faiss.read_index(faiss_index_path)
|
27 |
+
gpu_resource = faiss.StandardGpuResources()
|
28 |
+
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, cpu_index)
|
29 |
+
return gpu_index
|
30 |
+
|
31 |
+
def initialize_llm(self, model_id):
|
32 |
+
bnb_config = BitsAndBytesConfig(
|
33 |
load_in_4bit=True,
|
|
|
34 |
bnb_4bit_use_double_quant=True,
|
35 |
+
bnb_4bit_quant_type="nf4",
|
36 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
37 |
)
|
38 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
41 |
+
generate_text = pipeline(
|
42 |
+
model=model,
|
43 |
+
tokenizer=tokenizer,
|
|
|
|
|
|
|
|
|
44 |
return_full_text=True,
|
45 |
task='text-generation',
|
46 |
+
temperature=0.6,
|
47 |
max_new_tokens=2048,
|
48 |
)
|
49 |
+
return generate_text
|
50 |
+
|
51 |
+
def query_and_generate_response(self, query):
|
52 |
+
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
|
53 |
+
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
|
|
55 |
content = ""
|
56 |
+
for idx in indices[0]:
|
|
|
|
|
57 |
content += "-" * 50 + "\n"
|
58 |
+
content += self.documents[idx].page_content + "\n"
|
59 |
+
print(self.documents[idx].page_content)
|
60 |
+
print("############################")
|
61 |
+
|
62 |
+
prompt = f"Query: {query}\nSolution: {content}\n"
|
63 |
+
|
64 |
+
# Encode and prepare inputs
|
65 |
+
messages = [{"role": "user", "content": prompt}]
|
66 |
+
encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
|
67 |
+
model_inputs = encodeds.to(self.llm.device)
|
68 |
+
|
69 |
+
# Perform inference and measure time
|
70 |
+
start_time = datetime.now()
|
71 |
+
generated_ids = self.llm.model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
72 |
+
elapsed_time = datetime.now() - start_time
|
73 |
+
|
74 |
+
# Decode and return output
|
75 |
+
decoded = self.llm.tokenizer.batch_decode(generated_ids)
|
76 |
+
generated_response = decoded[0]
|
77 |
+
print("Generated response:", generated_response)
|
78 |
+
print("Time elapsed:", elapsed_time)
|
79 |
+
print("Device in use:", self.llm.device)
|
80 |
+
|
81 |
+
return generated_response
|
82 |
+
|
83 |
+
def qa_infer_gradio(self, query):
|
84 |
+
response = self.query_and_generate_response(query)
|
85 |
+
return response
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
# Example usage
|
89 |
+
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
|
90 |
+
lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
91 |
+
data_folder = 'sample_embedding_folder'
|
92 |
+
faiss_index_path = 'faiss_index_new_model3.index'
|
93 |
+
|
94 |
+
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder, faiss_index_path)
|
95 |
+
|
96 |
+
# Define Gradio interface function
|
97 |
+
def launch_interface():
|
98 |
css_code = """
|
99 |
.gradio-container {
|
100 |
background-color: #daccdb;
|
|
|
114 |
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
115 |
"Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."]
|
116 |
|
|
|
|
|
117 |
file_path = "ticketNames.txt"
|
118 |
|
119 |
# Read the file content
|
|
|
122 |
ticket_names = json.loads(content)
|
123 |
dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
|
124 |
|
125 |
+
# Define Gradio interface
|
126 |
+
interface = gr.Interface(
|
127 |
+
fn=doc_retrieval_gen.qa_infer_gradio,
|
128 |
+
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
|
129 |
+
allow_flagging='never',
|
130 |
+
examples=EXAMPLES,
|
131 |
+
cache_examples=False,
|
132 |
+
outputs=gr.Textbox(label="SOLUTION"),
|
133 |
+
css=css_code
|
134 |
+
)
|
135 |
|
136 |
+
# Launch Gradio interface
|
137 |
+
interface.launch(debug=True)
|
138 |
|
139 |
+
# Launch the interface
|
140 |
+
launch_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|