import gradio as gr import transformers import accelerate import einops import langchain import xformers import bitsandbytes import sentence_transformers import huggingface_hub import torch from torch import cuda, bfloat16 from transformers import StoppingCriteria, StoppingCriteriaList from langchain.llms import HuggingFacePipeline from langchain.document_loaders import TextLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import ConversationalRetrievalChain # Login to Hugging Face using a token huggingface_hub.login(token=token) """ Loading of the LLama3 model """ model_id = 'meta-llama/Meta-Llama-3-8B-Instruct' device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' # set quantization configuration to load large model with less GPU memory # this requires the `bitsandbytes` library bnb_config = transformers.BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=bfloat16 ) model_config = transformers.AutoConfig.from_pretrained( model_id, ) model = transformers.AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, config=model_config, quantization_config=bnb_config, device_map='auto', ) # enable evaluation mode to allow model inference model.eval() print(f"Model loaded on {device}") tokenizer = transformers.AutoTokenizer.from_pretrained( model_id, ) """ Setting up the stop list to define stopping criteria. """ stop_list = ['\nHuman:', '\n```\n'] stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list] stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids] # define custom stopping criteria object class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: for stop_ids in stop_token_ids: if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all(): return True return False stopping_criteria = StoppingCriteriaList([StopOnTokens()]) generate_text = transformers.pipeline( model=model, tokenizer=tokenizer, return_full_text=True, # langchain expects the full text task='text-generation', # we pass model parameters here too stopping_criteria=stopping_criteria, # without this model rambles during chat temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max max_new_tokens=512, # max number of tokens to generate in the output repetition_penalty=1.1 # without this output begins repeating ) llm = HuggingFacePipeline(pipeline=generate_text) loader = DirectoryLoader('data/text/', loader_cls=TextLoader) documents = loader.load() print('len of documents are',len(documents)) text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250) all_splits = text_splitter.split_documents(documents) model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {"device": "cuda"} embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) # storing embeddings in the vector store vectorstore = FAISS.from_documents(all_splits, embeddings) chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True) chat_history = [] def qa_infer(query): result = chain({"question": query, "chat_history": chat_history}) print(result['answer']) return result['answer'] # query = "What` is the best TS pin configuration for BQ24040 in normal battery charge mode" # qa_infer(query) EXAMPLES = ["What is the best TS pin configuration for BQ24040 in normal battery charge mode", "Can BQ25896 support I2C interface?", "Can you please provide me with Gerber/CAD file for UCC2897A"] demo = gr.Interface(fn=qa_infer, inputs="text",allow_flagging='never', examples=EXAMPLES, cache_examples=False,outputs="text") # launch the app! #demo.launch(enable_queue = True,share=True) #demo.queue(default_enabled=True).launch(debug=True,share=True) demo.launch()