Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,28 +5,36 @@ from transformers import AutoModelForCausalLM, AutoProcessor
|
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
|
8 |
-
# Load the model and processor
|
9 |
model_name = "arjunanand13/Florence-enphase2"
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
print(device)
|
13 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
|
14 |
|
|
|
15 |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
|
|
16 |
torch.cuda.empty_cache()
|
17 |
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def predict(image, question):
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
with torch.no_grad():
|
24 |
outputs = model.generate(**encoding, max_length=256)
|
|
|
25 |
answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
26 |
return answer
|
27 |
|
28 |
def gradio_interface(image, question):
|
29 |
-
|
30 |
if image.mode != "RGB":
|
31 |
image = image.convert("RGB")
|
32 |
|
@@ -36,13 +44,13 @@ def gradio_interface(image, question):
|
|
36 |
iface = gr.Interface(
|
37 |
fn=gradio_interface,
|
38 |
inputs=[
|
39 |
-
gr.Image(type="pil", label="Upload Image"),
|
40 |
-
gr.Textbox(label="Enter your question")
|
41 |
],
|
42 |
outputs=gr.Textbox(label="Answer"),
|
43 |
-
title="Florence-enphase Leg
|
44 |
-
description="Upload an image and ask a question about
|
|
|
45 |
)
|
46 |
-
|
47 |
|
48 |
-
iface.launch()
|
|
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
|
|
|
8 |
model_name = "arjunanand13/Florence-enphase2"
|
9 |
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
print(f"Using device: {device}")
|
|
|
12 |
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
|
14 |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
15 |
+
|
16 |
torch.cuda.empty_cache()
|
17 |
|
18 |
+
DEFAULT_PROMPT = ("You are a Leg Lift Classifier. There is an image of a throughput component "
|
19 |
+
"and we need to identify if the leg is inserted in the hole or not. Return 'True' "
|
20 |
+
"if any leg is not completely seated in the hole; return 'False' if the leg is inserted "
|
21 |
+
"in the hole. Return only the required JSON in this format: {Leg_lift: , Reason: }.")
|
22 |
|
23 |
def predict(image, question):
|
24 |
|
25 |
+
if not isinstance(image, Image.Image):
|
26 |
+
raise ValueError(f"Expected image to be PIL.Image, but got {type(image)}")
|
27 |
+
|
28 |
+
|
29 |
+
encoding = processor(images=image, text=question, return_tensors="pt").to(device)
|
30 |
|
31 |
with torch.no_grad():
|
32 |
outputs = model.generate(**encoding, max_length=256)
|
33 |
+
|
34 |
answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
35 |
return answer
|
36 |
|
37 |
def gradio_interface(image, question):
|
|
|
38 |
if image.mode != "RGB":
|
39 |
image = image.convert("RGB")
|
40 |
|
|
|
44 |
iface = gr.Interface(
|
45 |
fn=gradio_interface,
|
46 |
inputs=[
|
47 |
+
gr.Image(type="pil", label="Upload Image"), # Ensures image is passed as a PIL object
|
48 |
+
gr.Textbox(label="Enter your question or edit the default prompt", lines=6, value=DEFAULT_PROMPT) # Default prompt pre-filled and editable
|
49 |
],
|
50 |
outputs=gr.Textbox(label="Answer"),
|
51 |
+
title="Florence-enphase Leg Lift Classifier",
|
52 |
+
description=("Upload an image and ask a question about the leg lift. The model will classify whether "
|
53 |
+
"the leg is inserted in the hole or not based on the image. You can edit the default prompt if needed.")
|
54 |
)
|
|
|
55 |
|
56 |
+
iface.launch(debug=True)
|