Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,27 @@ import gradio as gr
|
|
2 |
import PyPDF2
|
3 |
import openai
|
4 |
from config import OPENAI_API_KEY
|
|
|
|
|
|
|
5 |
import os
|
6 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
7 |
-
|
8 |
|
|
|
9 |
|
10 |
class PDFChat:
|
11 |
def __init__(self):
|
12 |
self.pdf_text = ""
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def extract_text_from_pdf(self, pdf_file):
|
15 |
-
"""Extract text from PDF file and store it"""
|
16 |
if not pdf_file:
|
17 |
return "Please upload a PDF file first."
|
18 |
|
19 |
try:
|
20 |
-
self.pdf_text = ""
|
21 |
with open(pdf_file.name, "rb") as file:
|
22 |
reader = PyPDF2.PdfReader(file)
|
23 |
for page in reader.pages:
|
@@ -25,27 +30,67 @@ class PDFChat:
|
|
25 |
return "PDF loaded successfully! You can now ask questions."
|
26 |
except Exception as e:
|
27 |
return f"Error loading PDF: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
def
|
30 |
-
"""
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
if not question:
|
35 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# Construct the conversation context
|
38 |
messages = [
|
39 |
-
{"role": "system", "content":
|
40 |
-
{"role": "system", "content":
|
41 |
]
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
messages.append({"role": "user", "content": human})
|
46 |
messages.append({"role": "assistant", "content": assistant})
|
47 |
|
48 |
-
# Add current question
|
49 |
messages.append({"role": "user", "content": question})
|
50 |
|
51 |
try:
|
@@ -53,112 +98,110 @@ class PDFChat:
|
|
53 |
model="gpt-4-turbo",
|
54 |
messages=messages
|
55 |
)
|
56 |
-
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
except Exception as e:
|
62 |
error_message = f"Error generating response: {str(e)}"
|
63 |
-
|
64 |
-
return chat_history
|
65 |
-
|
66 |
-
def clear_history(self):
|
67 |
-
"""Clear conversation history"""
|
68 |
-
return []
|
69 |
|
70 |
-
css = """
|
71 |
-
.container {
|
72 |
-
max-width: 800px;
|
73 |
-
margin: auto;
|
74 |
-
}
|
75 |
-
.chat-window {
|
76 |
-
height: 600px;
|
77 |
-
overflow-y: auto;
|
78 |
-
}
|
79 |
-
"""
|
80 |
-
|
81 |
-
# Create PDF Chat instance
|
82 |
pdf_chat = PDFChat()
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
gr.Markdown("# Renesas PDF Chatbot")
|
87 |
|
88 |
with gr.Row():
|
89 |
-
with gr.Column(scale=
|
|
|
90 |
pdf_input = gr.File(
|
91 |
label="Upload PDF",
|
92 |
file_types=[".pdf"]
|
93 |
)
|
94 |
-
|
|
|
|
|
95 |
status_text = gr.Textbox(
|
96 |
label="Status",
|
97 |
interactive=False
|
98 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
chatbot = gr.Chatbot(
|
102 |
-
[],
|
103 |
-
elem_id="chatbot",
|
104 |
-
label="Chat History",
|
105 |
-
height=400
|
106 |
-
)
|
107 |
-
|
108 |
-
with gr.Row():
|
109 |
-
question_input = gr.Textbox(
|
110 |
-
label="Ask a question",
|
111 |
-
placeholder="What would you like to know about the PDF?",
|
112 |
-
scale=4
|
113 |
-
)
|
114 |
-
submit_button = gr.Button("Send", scale=1)
|
115 |
-
clear_button = gr.Button("Clear History", scale=1)
|
116 |
-
|
117 |
-
# Example queries
|
118 |
-
gr.Examples(
|
119 |
-
examples=[
|
120 |
-
["renesas-ra6m1-group-datasheet.pdf", "Which Renesas products are mentioned in this PDF?"],
|
121 |
-
["renesas-ra6m1-group-datasheet.pdf", "What are the key features of the microcontroller?"],
|
122 |
-
["renesas-ra6m1-group-datasheet.pdf", "Explain the power consumption specifications."]
|
123 |
-
],
|
124 |
-
inputs=[pdf_input, question_input],
|
125 |
-
label="Example Queries"
|
126 |
-
)
|
127 |
-
|
128 |
-
# Event handlers
|
129 |
load_button.click(
|
130 |
pdf_chat.extract_text_from_pdf,
|
131 |
inputs=[pdf_input],
|
132 |
outputs=[status_text]
|
133 |
)
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
138 |
|
139 |
-
|
140 |
-
pdf_chat.
|
141 |
-
|
142 |
-
outputs=[chatbot]
|
143 |
-
).then(
|
144 |
-
clear_input,
|
145 |
-
outputs=[question_input]
|
146 |
)
|
147 |
|
148 |
-
|
149 |
-
pdf_chat.answer_question
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
155 |
)
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
160 |
)
|
161 |
|
162 |
-
# Launch the interface with sharing enabled
|
163 |
if __name__ == "__main__":
|
164 |
demo.launch(debug=True)
|
|
|
2 |
import PyPDF2
|
3 |
import openai
|
4 |
from config import OPENAI_API_KEY
|
5 |
+
import pandas as pd
|
6 |
+
import json
|
7 |
+
import re
|
8 |
import os
|
|
|
|
|
9 |
|
10 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
11 |
|
12 |
class PDFChat:
|
13 |
def __init__(self):
|
14 |
self.pdf_text = ""
|
15 |
+
self.chat_history = []
|
16 |
+
self.system_prompt = """You are a knowledgeable assistant specializing in microcontrollers from Renesas, TI, and STM.
|
17 |
+
When comparing microcontrollers, always provide structured data in a JSON format that can be converted to a table.
|
18 |
+
Focus on key specifications like CPU frequency, memory, peripherals, ADC Resolution , Flash Memory ,temperature range, and special features."""
|
19 |
|
20 |
def extract_text_from_pdf(self, pdf_file):
|
|
|
21 |
if not pdf_file:
|
22 |
return "Please upload a PDF file first."
|
23 |
|
24 |
try:
|
25 |
+
self.pdf_text = ""
|
26 |
with open(pdf_file.name, "rb") as file:
|
27 |
reader = PyPDF2.PdfReader(file)
|
28 |
for page in reader.pages:
|
|
|
30 |
return "PDF loaded successfully! You can now ask questions."
|
31 |
except Exception as e:
|
32 |
return f"Error loading PDF: {str(e)}"
|
33 |
+
|
34 |
+
def clear_pdf(self):
|
35 |
+
self.pdf_text = ""
|
36 |
+
return "PDF content cleared."
|
37 |
+
|
38 |
+
def clear_chat_history(self):
|
39 |
+
self.chat_history = []
|
40 |
+
return "", None
|
41 |
|
42 |
+
def extract_json_from_text(self, text):
|
43 |
+
"""Extract JSON data from the response text"""
|
44 |
+
# Find JSON pattern between ```json and ```
|
45 |
+
json_match = re.search(r'```json\s*(.*?)\s*```', text, re.DOTALL)
|
46 |
+
if json_match:
|
47 |
+
json_str = json_match.group(1)
|
48 |
+
else:
|
49 |
+
# Try to find JSON pattern between { and }
|
50 |
+
json_match = re.search(r'({[\s\S]*})', text)
|
51 |
+
if json_match:
|
52 |
+
json_str = json_match.group(1)
|
53 |
+
else:
|
54 |
+
return None
|
55 |
+
|
56 |
+
try:
|
57 |
+
return json.loads(json_str)
|
58 |
+
except json.JSONDecodeError:
|
59 |
+
return None
|
60 |
|
61 |
+
def answer_question(self, question):
|
62 |
if not question:
|
63 |
+
return "", None
|
64 |
+
|
65 |
+
structured_prompt = """
|
66 |
+
If the question is asking for a comparison or suggestion of microcontrollers,
|
67 |
+
provide your response in the following JSON format wrapped in ```json ```:
|
68 |
+
{
|
69 |
+
"explanation": "Your textual explanation here",
|
70 |
+
"comparison_table": [
|
71 |
+
{
|
72 |
+
"Feature": "feature name",
|
73 |
+
"Controller1_Name": "value",
|
74 |
+
"Controller2_Name": "value",
|
75 |
+
...
|
76 |
+
},
|
77 |
+
...
|
78 |
+
]
|
79 |
+
}
|
80 |
+
"""
|
81 |
|
|
|
82 |
messages = [
|
83 |
+
{"role": "system", "content": self.system_prompt},
|
84 |
+
{"role": "system", "content": structured_prompt}
|
85 |
]
|
86 |
|
87 |
+
if self.pdf_text:
|
88 |
+
messages.append({"role": "system", "content": f"PDF Content: {self.pdf_text}"})
|
89 |
+
|
90 |
+
for human, assistant in self.chat_history:
|
91 |
messages.append({"role": "user", "content": human})
|
92 |
messages.append({"role": "assistant", "content": assistant})
|
93 |
|
|
|
94 |
messages.append({"role": "user", "content": question})
|
95 |
|
96 |
try:
|
|
|
98 |
model="gpt-4-turbo",
|
99 |
messages=messages
|
100 |
)
|
101 |
+
response_text = response.choices[0].message['content']
|
102 |
+
|
103 |
|
104 |
+
json_data = self.extract_json_from_text(response_text)
|
105 |
+
|
106 |
+
if json_data and "comparison_table" in json_data:
|
107 |
+
df = pd.DataFrame(json_data["comparison_table"])
|
108 |
+
explanation = json_data.get('explanation', response_text)
|
109 |
+
self.chat_history.append((question, explanation))
|
110 |
+
return explanation, df
|
111 |
+
else:
|
112 |
+
self.chat_history.append((question, response_text))
|
113 |
+
return response_text, None
|
114 |
+
|
115 |
except Exception as e:
|
116 |
error_message = f"Error generating response: {str(e)}"
|
117 |
+
return error_message, None
|
|
|
|
|
|
|
|
|
|
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
pdf_chat = PDFChat()
|
120 |
|
121 |
+
with gr.Blocks() as demo:
|
122 |
+
gr.Markdown("# Renasus Chatbot")
|
|
|
123 |
|
124 |
with gr.Row():
|
125 |
+
with gr.Column(scale=1):
|
126 |
+
gr.Markdown("### PDF Controls")
|
127 |
pdf_input = gr.File(
|
128 |
label="Upload PDF",
|
129 |
file_types=[".pdf"]
|
130 |
)
|
131 |
+
with gr.Row():
|
132 |
+
load_button = gr.Button("Load PDF")
|
133 |
+
clear_pdf_button = gr.Button("Clear PDF")
|
134 |
status_text = gr.Textbox(
|
135 |
label="Status",
|
136 |
interactive=False
|
137 |
)
|
138 |
+
|
139 |
+
with gr.Column(scale=2):
|
140 |
+
gr.Markdown("### Microcontroller Selection Interface")
|
141 |
+
question_input = gr.Textbox(
|
142 |
+
label="Ask about microcontroller selection",
|
143 |
+
placeholder="Describe your requirements or ask for comparisons...",
|
144 |
+
lines=3
|
145 |
+
)
|
146 |
+
explanation_text = gr.Textbox(
|
147 |
+
label="Explanation",
|
148 |
+
interactive=False,
|
149 |
+
lines=4
|
150 |
+
)
|
151 |
+
table_output = gr.DataFrame(
|
152 |
+
label="Comparison Table",
|
153 |
+
interactive=False,
|
154 |
+
wrap=True
|
155 |
+
)
|
156 |
+
with gr.Row():
|
157 |
+
submit_button = gr.Button("Send")
|
158 |
+
clear_history_button = gr.Button("Clear Chat History")
|
159 |
+
|
160 |
+
with gr.Group():
|
161 |
+
gr.Markdown("### Example Questions")
|
162 |
+
gr.Examples(
|
163 |
+
examples=[
|
164 |
+
["Suggest controller suitable for water level monitoring system comparing RA4M1 and STM32L4"],
|
165 |
+
["Recommend controller for centralized vehicle lighting and door control systems comparing RA6M3 and STM32F4"],
|
166 |
+
["Suggest best suited controller for a Solar Inverter Design comparing RA6T1 and TMS320F28379D"],
|
167 |
+
["Compare RA6M5 and STM32G4 series for building automation applications"],
|
168 |
+
],
|
169 |
+
inputs=[question_input],
|
170 |
+
label="Example Questions"
|
171 |
+
)
|
172 |
|
173 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
load_button.click(
|
175 |
pdf_chat.extract_text_from_pdf,
|
176 |
inputs=[pdf_input],
|
177 |
outputs=[status_text]
|
178 |
)
|
179 |
|
180 |
+
clear_pdf_button.click(
|
181 |
+
pdf_chat.clear_pdf,
|
182 |
+
outputs=[status_text]
|
183 |
+
)
|
184 |
|
185 |
+
clear_history_button.click(
|
186 |
+
pdf_chat.clear_chat_history,
|
187 |
+
outputs=[explanation_text, table_output]
|
|
|
|
|
|
|
|
|
188 |
)
|
189 |
|
190 |
+
def handle_question(question):
|
191 |
+
explanation, df = pdf_chat.answer_question(question)
|
192 |
+
return explanation, df, ""
|
193 |
+
|
194 |
+
question_input.submit(
|
195 |
+
handle_question,
|
196 |
+
inputs=[question_input],
|
197 |
+
outputs=[explanation_text, table_output, question_input]
|
198 |
)
|
199 |
|
200 |
+
submit_button.click(
|
201 |
+
handle_question,
|
202 |
+
inputs=[question_input],
|
203 |
+
outputs=[explanation_text, table_output, question_input]
|
204 |
)
|
205 |
|
|
|
206 |
if __name__ == "__main__":
|
207 |
demo.launch(debug=True)
|