Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PyPDF2
|
3 |
+
import openai
|
4 |
+
from config import OPENAI_API_KEY
|
5 |
+
import os
|
6 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
7 |
+
|
8 |
+
def extract_text_from_pdf(pdf_file):
|
9 |
+
text = ""
|
10 |
+
with open(pdf_file.name, "rb") as file:
|
11 |
+
reader = PyPDF2.PdfReader(file)
|
12 |
+
for page in reader.pages:
|
13 |
+
text += page.extract_text() + "\n"
|
14 |
+
return text
|
15 |
+
|
16 |
+
def answer_question(pdf_file, question):
|
17 |
+
# Extract text from the PDF
|
18 |
+
text = extract_text_from_pdf(pdf_file)
|
19 |
+
|
20 |
+
# Define the assistant's behavior
|
21 |
+
assistant_prompt = f"""
|
22 |
+
You are a helpful assistant that answers questions based on the content of the PDF provided.
|
23 |
+
Here is the content of the PDF:
|
24 |
+
{text}
|
25 |
+
|
26 |
+
User question: {question}
|
27 |
+
"""
|
28 |
+
|
29 |
+
# Call OpenAI API to get the answer using GPT-4 Turbo
|
30 |
+
response = openai.ChatCompletion.create(
|
31 |
+
model="gpt-4-turbo",
|
32 |
+
messages=[
|
33 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
34 |
+
{"role": "user", "content": assistant_prompt}
|
35 |
+
]
|
36 |
+
)
|
37 |
+
|
38 |
+
answer = response.choices[0].message['content']
|
39 |
+
return answer
|
40 |
+
|
41 |
+
# Create Gradio interface using the updated input/output classes
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=answer_question,
|
44 |
+
inputs=[
|
45 |
+
gr.File(label="Upload PDF"),
|
46 |
+
gr.Textbox(label="Ask a question about the PDF", placeholder="What do you want to know?")
|
47 |
+
],
|
48 |
+
outputs="text",
|
49 |
+
title="PDF Q&A with OpenAI Assistant",
|
50 |
+
description="Upload a PDF document and ask questions about its content. The assistant will provide answers based on the PDF.",
|
51 |
+
examples=[
|
52 |
+
["renesas-ra6m1-group-datasheet.pdf", "Which Renesas products are mentioned in this PDF?"]
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
# Launch the interface
|
57 |
+
iface.launch()
|