Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
import gradio as gr
|
3 |
+
import json
|
4 |
+
from transformers import pipeline
|
5 |
+
from datasets import DatasetDict, Dataset
|
6 |
+
|
7 |
+
# Função para extrair texto do PDF
|
8 |
+
def extract_text_from_pdf(pdf_file):
|
9 |
+
reader = PyPDF2.PdfFileReader(pdf_file)
|
10 |
+
text = ""
|
11 |
+
for page in range(reader.numPages):
|
12 |
+
text += reader.getPage(page).extract_text()
|
13 |
+
return text
|
14 |
+
|
15 |
+
# Função para gerar perguntas e respostas usando o pipeline da Hugging Face
|
16 |
+
def generate_qa_pairs(text):
|
17 |
+
qa_pipeline = pipeline("question-generation")
|
18 |
+
qas = qa_pipeline(text)
|
19 |
+
return qas
|
20 |
+
|
21 |
+
# Função para converter os pares de QA no formato SQuAD
|
22 |
+
def convert_to_squad_format(qas, context):
|
23 |
+
squad_data = []
|
24 |
+
for i, qa in enumerate(qas):
|
25 |
+
entry = {
|
26 |
+
"title": "Generated Data",
|
27 |
+
"context": context,
|
28 |
+
"question": qa['question'],
|
29 |
+
"id": str(i),
|
30 |
+
"answers": {
|
31 |
+
"answer_start": [qa['answer']['start']],
|
32 |
+
"text": [qa['answer']['text']]
|
33 |
+
}
|
34 |
+
}
|
35 |
+
squad_data.append(entry)
|
36 |
+
return squad_data
|
37 |
+
|
38 |
+
# Função para salvar os dados no formato SQuAD
|
39 |
+
def save_to_json(data, file_name):
|
40 |
+
if not file_name.endswith(".json"):
|
41 |
+
file_name += ".json"
|
42 |
+
with open(file_name, "w", encoding='utf-8') as f:
|
43 |
+
json.dump(data, f, ensure_ascii=False, indent=4)
|
44 |
+
return file_name
|
45 |
+
|
46 |
+
# Função principal para ser usada no Gradio
|
47 |
+
def process_pdf(pdf_file, file_name):
|
48 |
+
context = extract_text_from_pdf(pdf_file)
|
49 |
+
qas = generate_qa_pairs(context)
|
50 |
+
squad_data = convert_to_squad_format(qas, context)
|
51 |
+
file_path = save_to_json(squad_data, file_name)
|
52 |
+
return file_path
|
53 |
+
|
54 |
+
# Interface Gradio
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
with gr.Row():
|
57 |
+
pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"])
|
58 |
+
file_name = gr.Textbox(label="Output JSON File Name", value="squad_dataset")
|
59 |
+
process_button = gr.Button("Process PDF")
|
60 |
+
download_link = gr.File(label="Download JSON", interactive=False)
|
61 |
+
|
62 |
+
process_button.click(fn=process_pdf, inputs=[pdf_file, file_name], outputs=download_link)
|
63 |
+
|
64 |
+
demo.launch()
|