Spaces:
Sleeping
Sleeping
Clean up text with LT alphabets
Browse files
app.py
CHANGED
@@ -14,7 +14,8 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
#"ihanif/speecht5_finetuned_voxpopuli_lt"
|
17 |
-
model_id = "sanchit-gandhi/speecht5_tts_vox_nl"
|
|
|
18 |
processor = SpeechT5Processor.from_pretrained(model_id)
|
19 |
|
20 |
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
@@ -26,12 +27,38 @@ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validat
|
|
26 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def translate(audio):
|
30 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "
|
31 |
return outputs["text"]
|
32 |
|
33 |
|
34 |
def synthesise(text):
|
|
|
35 |
inputs = processor(text=text, return_tensors="pt")
|
36 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
37 |
return speech.cpu()
|
@@ -57,7 +84,7 @@ demo = gr.Blocks()
|
|
57 |
mic_translate = gr.Interface(
|
58 |
fn=speech_to_speech_translation,
|
59 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
60 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
61 |
title=title,
|
62 |
description=description,
|
63 |
)
|
@@ -65,7 +92,7 @@ mic_translate = gr.Interface(
|
|
65 |
file_translate = gr.Interface(
|
66 |
fn=speech_to_speech_translation,
|
67 |
inputs=gr.Audio(source="upload", type="filepath"),
|
68 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
69 |
examples=[["./example.wav"]],
|
70 |
title=title,
|
71 |
description=description,
|
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
#"ihanif/speecht5_finetuned_voxpopuli_lt"
|
17 |
+
#model_id = "sanchit-gandhi/speecht5_tts_vox_nl"
|
18 |
+
model_id = "ihanif/speecht5_finetuned_voxpopuli_lt"
|
19 |
processor = SpeechT5Processor.from_pretrained(model_id)
|
20 |
|
21 |
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
|
|
27 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
28 |
|
29 |
|
30 |
+
replacements = [
|
31 |
+
("à", "a"),
|
32 |
+
("ą", "a"),
|
33 |
+
("ç", "c"),
|
34 |
+
("č", "c"),
|
35 |
+
("è", "e"),
|
36 |
+
("ë", "e"),
|
37 |
+
("ė", "e"),
|
38 |
+
("ę", "e"),
|
39 |
+
("í", "i"),
|
40 |
+
("ï", "i"),
|
41 |
+
("į", "i"),
|
42 |
+
("ö", "o"),
|
43 |
+
("š", "s"),
|
44 |
+
("ü", "u"),
|
45 |
+
("ū", "u"),
|
46 |
+
("ų", "u"),
|
47 |
+
("ž", "z"),
|
48 |
+
]
|
49 |
+
|
50 |
+
def cleanup_text(text):
|
51 |
+
for src, dst in replacements:
|
52 |
+
text = text.replace(src, dst)
|
53 |
+
return text
|
54 |
+
|
55 |
def translate(audio):
|
56 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "lt"})
|
57 |
return outputs["text"]
|
58 |
|
59 |
|
60 |
def synthesise(text):
|
61 |
+
text = cleanup_text(text)
|
62 |
inputs = processor(text=text, return_tensors="pt")
|
63 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
64 |
return speech.cpu()
|
|
|
84 |
mic_translate = gr.Interface(
|
85 |
fn=speech_to_speech_translation,
|
86 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
87 |
+
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
|
88 |
title=title,
|
89 |
description=description,
|
90 |
)
|
|
|
92 |
file_translate = gr.Interface(
|
93 |
fn=speech_to_speech_translation,
|
94 |
inputs=gr.Audio(source="upload", type="filepath"),
|
95 |
+
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
|
96 |
examples=[["./example.wav"]],
|
97 |
title=title,
|
98 |
description=description,
|