import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Set model ID # comment/uncomment the model you want to use # GPT-2 (very small, general-purpose, mainly for testing or learning purposes) # model_id = "gpt2" # DeepSeek Coder 1.3B (base version, no instruction fine-tuning — better for raw code generation tasks) # model_id = "deepseek-ai/deepseek-coder-1.3b" # DeepSeek Coder 1.3B Base (same as above — explicit base naming, safe to use) # model_id = "deepseek-ai/deepseek-coder-1.3b-base" # CodeLlama 7B Instruct (powerful code generation model from Meta, instruction-tuned) # model_id = "codellama/CodeLlama-7b-Instruct-hf" # Meta-Llama 3.1 8B Instruct (very powerful general-purpose model, instruction-following, also decent for code & NLP) # model_id = "meta-llama/Llama-3.1-8B-Instruct" # DeepSeek-R1 + Qwen3 8B (highly capable multi-purpose model — great for reasoning, coding, general Q&A) # model_id = "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B" # Qwen2.5-VL-7B Instruct (multimodal: can handle text + images, instruction-tuned — mostly for vision-language tasks) # model_id = "Qwen/Qwen2.5-VL-7B-Instruct" # DeepSeek Coder 1.3B Instruct (great for both natural language and coding tasks) model_id = "deepseek-ai/deepseek-coder-1.3b-instruct" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 ) # Move model to GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def generate_code(prompt): if not prompt.strip(): return "⚠ Please enter a valid prompt." inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=200, temperature=0.7 ) output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Strip the prompt if it appears at the start if output_text.startswith(prompt): output_text = output_text[len(prompt):].lstrip() return output_text demo = gr.Interface( fn=generate_code, inputs=gr.Textbox(lines=5, label="Ask me a question ? or tell me to generate-code ^_^ :"), outputs=gr.Textbox(label="Generated Output is:"), title="Code-NLP Fusion" ) demo.launch()