Spaces:
Running
Running
Upload 4 files
Browse files- app.py +147 -0
- requirements.txt +0 -0
- transformer/__init__.py +18 -0
- transformer/app.py +1100 -0
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Simple AI Text Humanizer using Gradio
|
3 |
+
|
4 |
+
A clean text-to-text interface for humanizing AI-generated content.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import time
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
from transformer.app import AdvancedAcademicTextHumanizer, download_nltk_resources
|
12 |
+
|
13 |
+
# Global humanizer instance
|
14 |
+
humanizer_instance = None
|
15 |
+
|
16 |
+
def initialize_humanizer():
|
17 |
+
"""Initialize the humanizer model."""
|
18 |
+
global humanizer_instance
|
19 |
+
if humanizer_instance is None:
|
20 |
+
try:
|
21 |
+
print("🔄 Downloading NLTK resources...")
|
22 |
+
# Download NLTK resources
|
23 |
+
download_nltk_resources()
|
24 |
+
|
25 |
+
print("🔄 Initializing lightweight models...")
|
26 |
+
# Initialize humanizer with lightweight, fast settings
|
27 |
+
humanizer_instance = AdvancedAcademicTextHumanizer(
|
28 |
+
sentence_model="fast", # Uses all-MiniLM-L6-v2 (lightweight)
|
29 |
+
paraphrase_model="fast", # Uses t5-small (fast)
|
30 |
+
enable_advanced_models=True,
|
31 |
+
ai_avoidance_mode=True
|
32 |
+
)
|
33 |
+
print("✅ All models loaded successfully and ready!")
|
34 |
+
return "✅ Models loaded successfully"
|
35 |
+
except Exception as e:
|
36 |
+
error_msg = f"❌ Error loading models: {str(e)}"
|
37 |
+
print(error_msg)
|
38 |
+
return error_msg
|
39 |
+
return "✅ Models already loaded"
|
40 |
+
|
41 |
+
def humanize_text(input_text: str, use_passive: bool, use_synonyms: bool, use_paraphrasing: bool) -> str:
|
42 |
+
"""Transform AI text to human-like text."""
|
43 |
+
if not input_text.strip():
|
44 |
+
return "Please enter some text to transform."
|
45 |
+
|
46 |
+
global humanizer_instance
|
47 |
+
if humanizer_instance is None:
|
48 |
+
init_result = initialize_humanizer()
|
49 |
+
if "Error" in init_result:
|
50 |
+
return init_result
|
51 |
+
|
52 |
+
try:
|
53 |
+
# Transform the text
|
54 |
+
transformed = humanizer_instance.humanize_text(
|
55 |
+
input_text,
|
56 |
+
use_passive=use_passive,
|
57 |
+
use_synonyms=use_synonyms,
|
58 |
+
use_paraphrasing=use_paraphrasing
|
59 |
+
)
|
60 |
+
return transformed
|
61 |
+
except Exception as e:
|
62 |
+
return f"❌ Error during transformation: {str(e)}"
|
63 |
+
|
64 |
+
def create_interface():
|
65 |
+
"""Create the Gradio interface."""
|
66 |
+
|
67 |
+
with gr.Blocks(title="AI Text Humanizer", theme=gr.themes.Soft()) as interface:
|
68 |
+
gr.Markdown("# 🤖➡️🧔🏻♂️ AI Text Humanizer")
|
69 |
+
gr.Markdown("Transform AI-generated text into human-like content using advanced ML models.")
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
input_text = gr.Textbox(
|
74 |
+
label="Input Text",
|
75 |
+
placeholder="Paste your AI-generated text here...",
|
76 |
+
lines=10,
|
77 |
+
max_lines=20
|
78 |
+
)
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
use_passive = gr.Checkbox(
|
82 |
+
label="Passive Voice Transformation",
|
83 |
+
value=False,
|
84 |
+
info="Convert active voice to passive"
|
85 |
+
)
|
86 |
+
use_synonyms = gr.Checkbox(
|
87 |
+
label="Synonym Replacement",
|
88 |
+
value=True,
|
89 |
+
info="AI-powered contextual synonyms"
|
90 |
+
)
|
91 |
+
use_paraphrasing = gr.Checkbox(
|
92 |
+
label="Neural Paraphrasing",
|
93 |
+
value=True,
|
94 |
+
info="T5 sentence-level rewriting"
|
95 |
+
)
|
96 |
+
|
97 |
+
transform_btn = gr.Button("🚀 Transform Text", variant="primary")
|
98 |
+
|
99 |
+
with gr.Column():
|
100 |
+
output_text = gr.Textbox(
|
101 |
+
label="Transformed Text",
|
102 |
+
lines=10,
|
103 |
+
max_lines=20,
|
104 |
+
interactive=False
|
105 |
+
)
|
106 |
+
|
107 |
+
# Initialize models on startup
|
108 |
+
gr.Markdown("### Model Status")
|
109 |
+
status_text = gr.Textbox(
|
110 |
+
label="Initialization Status",
|
111 |
+
value="Click 'Transform Text' to load models...",
|
112 |
+
interactive=False
|
113 |
+
)
|
114 |
+
|
115 |
+
# Connect the transformation function
|
116 |
+
transform_btn.click(
|
117 |
+
fn=humanize_text,
|
118 |
+
inputs=[input_text, use_passive, use_synonyms, use_paraphrasing],
|
119 |
+
outputs=output_text
|
120 |
+
)
|
121 |
+
|
122 |
+
# Initialize models when interface loads
|
123 |
+
interface.load(
|
124 |
+
fn=initialize_humanizer,
|
125 |
+
outputs=status_text
|
126 |
+
)
|
127 |
+
|
128 |
+
gr.Markdown("---")
|
129 |
+
gr.Markdown("**Note:** First-time model loading may take a few moments.")
|
130 |
+
|
131 |
+
return interface
|
132 |
+
|
133 |
+
def main():
|
134 |
+
"""Launch the Gradio interface."""
|
135 |
+
interface = create_interface()
|
136 |
+
|
137 |
+
# Launch with Mac-optimized settings
|
138 |
+
interface.launch(
|
139 |
+
server_name="127.0.0.1",
|
140 |
+
server_port=7860,
|
141 |
+
share=False,
|
142 |
+
debug=False,
|
143 |
+
show_error=True
|
144 |
+
)
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
main()
|
requirements.txt
ADDED
Binary file (1.93 kB). View file
|
|
transformer/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
AI Text Humanizer Package
|
3 |
+
|
4 |
+
A sophisticated text transformation system that converts AI-generated text
|
5 |
+
into more human-like, academic writing while preserving formatting.
|
6 |
+
"""
|
7 |
+
|
8 |
+
__version__ = "2.0.0"
|
9 |
+
__author__ = "AI Text Humanizer Team"
|
10 |
+
__description__ = "Advanced text humanization with markdown preservation"
|
11 |
+
|
12 |
+
from .app import AdvancedAcademicTextHumanizer, NLP_GLOBAL, download_nltk_resources
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"AdvancedAcademicTextHumanizer",
|
16 |
+
"NLP_GLOBAL",
|
17 |
+
"download_nltk_resources"
|
18 |
+
]
|
transformer/app.py
ADDED
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Advanced Academic Text Humanizer with State-of-the-Art ML Models
|
3 |
+
|
4 |
+
This module provides cutting-edge text transformation capabilities using the latest
|
5 |
+
ML models for superior AI text humanization, including T5 paraphrasing, advanced
|
6 |
+
sentence transformers, and AI detection avoidance techniques.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import ssl
|
10 |
+
import random
|
11 |
+
import warnings
|
12 |
+
import re
|
13 |
+
import logging
|
14 |
+
import math
|
15 |
+
from typing import List, Dict, Tuple, Optional, Union
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from functools import lru_cache
|
18 |
+
|
19 |
+
import nltk
|
20 |
+
import spacy
|
21 |
+
import torch
|
22 |
+
import numpy as np
|
23 |
+
from nltk.tokenize import word_tokenize, sent_tokenize
|
24 |
+
from nltk.corpus import wordnet, stopwords
|
25 |
+
from sentence_transformers import SentenceTransformer, util
|
26 |
+
from transformers import (
|
27 |
+
T5ForConditionalGeneration, T5Tokenizer,
|
28 |
+
PegasusForConditionalGeneration, PegasusTokenizer,
|
29 |
+
pipeline, AutoTokenizer, AutoModelForCausalLM
|
30 |
+
)
|
31 |
+
|
32 |
+
# Configure logging
|
33 |
+
logging.basicConfig(level=logging.INFO)
|
34 |
+
logger = logging.getLogger(__name__)
|
35 |
+
|
36 |
+
# Suppress warnings
|
37 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
38 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
39 |
+
|
40 |
+
# Global models
|
41 |
+
NLP_GLOBAL = None
|
42 |
+
DEVICE = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
|
44 |
+
# Latest state-of-the-art models configuration
|
45 |
+
LATEST_MODELS = {
|
46 |
+
'sentence_transformers': {
|
47 |
+
'premium': 'sentence-transformers/all-MiniLM-L12-v2', # Lighter premium option
|
48 |
+
'balanced': 'sentence-transformers/all-MiniLM-L6-v2', # Fast and reliable
|
49 |
+
'fast': 'sentence-transformers/all-MiniLM-L6-v2' # Same as balanced for consistency
|
50 |
+
},
|
51 |
+
'paraphrasing': {
|
52 |
+
'premium': 'google-t5/t5-base', # Much lighter than UL2
|
53 |
+
'balanced': 'google-t5/t5-small', # Good balance
|
54 |
+
'fast': 'google-t5/t5-small' # Fast and efficient
|
55 |
+
},
|
56 |
+
'text_generation': {
|
57 |
+
'premium': 'google-t5/t5-base', # Much lighter than 70B models
|
58 |
+
'balanced': 'google-t5/t5-small', # Small and fast
|
59 |
+
'fast': 'google-t5/t5-small' # Consistent with balanced
|
60 |
+
}
|
61 |
+
}
|
62 |
+
|
63 |
+
def initialize_nlp():
|
64 |
+
"""Initialize the global NLP model with enhanced capabilities."""
|
65 |
+
global NLP_GLOBAL
|
66 |
+
if NLP_GLOBAL is None:
|
67 |
+
try:
|
68 |
+
NLP_GLOBAL = spacy.load("en_core_web_sm")
|
69 |
+
logger.info("Successfully loaded spaCy model")
|
70 |
+
except Exception as e:
|
71 |
+
logger.error(f"Failed to load spaCy model: {e}")
|
72 |
+
raise
|
73 |
+
|
74 |
+
# Initialize on import
|
75 |
+
try:
|
76 |
+
initialize_nlp()
|
77 |
+
except Exception as e:
|
78 |
+
logger.warning(f"Could not initialize NLP model: {e}")
|
79 |
+
|
80 |
+
@dataclass
|
81 |
+
class TextSegment:
|
82 |
+
"""Enhanced text segment with additional metadata."""
|
83 |
+
content: str
|
84 |
+
segment_type: str # 'text', 'markdown', 'code', 'list', 'header'
|
85 |
+
line_number: int
|
86 |
+
preserve_formatting: bool = False
|
87 |
+
perplexity_score: float = 0.0
|
88 |
+
ai_probability: float = 0.0
|
89 |
+
|
90 |
+
class AdvancedMarkdownPreserver:
|
91 |
+
"""Enhanced markdown preservation with better pattern recognition."""
|
92 |
+
|
93 |
+
def __init__(self):
|
94 |
+
self.patterns = {
|
95 |
+
'code_block': re.compile(r'```[\s\S]*?```', re.MULTILINE),
|
96 |
+
'inline_code': re.compile(r'`[^`]+`'),
|
97 |
+
'header': re.compile(r'^#{1,6}\s+.*$', re.MULTILINE),
|
98 |
+
'list_item': re.compile(r'^\s*[-*+]\s+.*$', re.MULTILINE),
|
99 |
+
'numbered_list': re.compile(r'^\s*\d+\.\s+.*$', re.MULTILINE),
|
100 |
+
'link': re.compile(r'\[([^\]]+)\]\(([^)]+)\)'),
|
101 |
+
'bold': re.compile(r'\*\*([^*]+)\*\*'),
|
102 |
+
'italic': re.compile(r'\*([^*]+)\*'),
|
103 |
+
'blockquote': re.compile(r'^>\s+.*$', re.MULTILINE),
|
104 |
+
'horizontal_rule': re.compile(r'^---+$', re.MULTILINE),
|
105 |
+
'table_row': re.compile(r'^\s*\|.*\|\s*$', re.MULTILINE),
|
106 |
+
'latex_math': re.compile(r'\$\$.*?\$\$|\$.*?\$', re.DOTALL),
|
107 |
+
'footnote': re.compile(r'\[\^[^\]]+\]'),
|
108 |
+
}
|
109 |
+
|
110 |
+
def segment_text(self, text: str) -> List[TextSegment]:
|
111 |
+
"""Segment text with enhanced analysis."""
|
112 |
+
segments = []
|
113 |
+
lines = text.split('\n')
|
114 |
+
|
115 |
+
for i, line in enumerate(lines):
|
116 |
+
segment_type = self._identify_line_type(line)
|
117 |
+
preserve = segment_type != 'text'
|
118 |
+
|
119 |
+
# Calculate perplexity and AI probability for text segments
|
120 |
+
perplexity = self._calculate_perplexity(line) if segment_type == 'text' else 0.0
|
121 |
+
ai_prob = self._calculate_ai_probability(line) if segment_type == 'text' else 0.0
|
122 |
+
|
123 |
+
segments.append(TextSegment(
|
124 |
+
content=line,
|
125 |
+
segment_type=segment_type,
|
126 |
+
line_number=i,
|
127 |
+
preserve_formatting=preserve,
|
128 |
+
perplexity_score=perplexity,
|
129 |
+
ai_probability=ai_prob
|
130 |
+
))
|
131 |
+
|
132 |
+
return segments
|
133 |
+
|
134 |
+
def _identify_line_type(self, line: str) -> str:
|
135 |
+
"""Enhanced line type identification."""
|
136 |
+
if not line.strip():
|
137 |
+
return 'empty'
|
138 |
+
|
139 |
+
for pattern_name, pattern in self.patterns.items():
|
140 |
+
if pattern.match(line):
|
141 |
+
return pattern_name
|
142 |
+
|
143 |
+
return 'text'
|
144 |
+
|
145 |
+
def _calculate_perplexity(self, text: str) -> float:
|
146 |
+
"""Calculate text perplexity as an AI detection metric."""
|
147 |
+
if not text.strip():
|
148 |
+
return 0.0
|
149 |
+
|
150 |
+
words = word_tokenize(text.lower())
|
151 |
+
if len(words) < 3:
|
152 |
+
return 0.0
|
153 |
+
|
154 |
+
# Simple perplexity approximation based on word frequency patterns
|
155 |
+
word_lengths = [len(word) for word in words if word.isalpha()]
|
156 |
+
if not word_lengths:
|
157 |
+
return 0.0
|
158 |
+
|
159 |
+
avg_length = np.mean(word_lengths)
|
160 |
+
length_variance = np.var(word_lengths)
|
161 |
+
|
162 |
+
# AI text tends to have more consistent word lengths (lower variance)
|
163 |
+
perplexity = length_variance / (avg_length + 1e-6)
|
164 |
+
return min(perplexity, 10.0) # Cap at 10
|
165 |
+
|
166 |
+
def _calculate_ai_probability(self, text: str) -> float:
|
167 |
+
"""Calculate probability that text is AI-generated."""
|
168 |
+
if not text.strip():
|
169 |
+
return 0.0
|
170 |
+
|
171 |
+
# Check for AI-typical patterns
|
172 |
+
ai_indicators = 0
|
173 |
+
total_checks = 6
|
174 |
+
|
175 |
+
# 1. Consistent sentence structure
|
176 |
+
sentences = sent_tokenize(text)
|
177 |
+
if len(sentences) > 1:
|
178 |
+
lengths = [len(sent.split()) for sent in sentences]
|
179 |
+
if np.std(lengths) < 3: # Very consistent lengths
|
180 |
+
ai_indicators += 1
|
181 |
+
|
182 |
+
# 2. Overuse of transitional phrases
|
183 |
+
transitions = ['however', 'moreover', 'furthermore', 'additionally', 'consequently']
|
184 |
+
transition_count = sum(1 for trans in transitions if trans in text.lower())
|
185 |
+
if transition_count > len(sentences) * 0.3:
|
186 |
+
ai_indicators += 1
|
187 |
+
|
188 |
+
# 3. Lack of contractions
|
189 |
+
contractions = ["n't", "'ll", "'re", "'ve", "'d", "'m"]
|
190 |
+
if not any(cont in text for cont in contractions) and len(text.split()) > 10:
|
191 |
+
ai_indicators += 1
|
192 |
+
|
193 |
+
# 4. Overly formal language in casual contexts
|
194 |
+
formal_words = ['utilize', 'facilitate', 'demonstrate', 'implement', 'comprehensive']
|
195 |
+
formal_count = sum(1 for word in formal_words if word in text.lower())
|
196 |
+
if formal_count > len(text.split()) * 0.1:
|
197 |
+
ai_indicators += 1
|
198 |
+
|
199 |
+
# 5. Perfect grammar (rarely natural)
|
200 |
+
if len(text) > 50 and not re.search(r'[.]{2,}|[!]{2,}|[?]{2,}', text):
|
201 |
+
ai_indicators += 1
|
202 |
+
|
203 |
+
# 6. Repetitive phrasing patterns
|
204 |
+
words = text.lower().split()
|
205 |
+
if len(words) > 10:
|
206 |
+
unique_words = len(set(words))
|
207 |
+
if unique_words / len(words) < 0.6: # Low lexical diversity
|
208 |
+
ai_indicators += 1
|
209 |
+
|
210 |
+
return ai_indicators / total_checks
|
211 |
+
|
212 |
+
def reconstruct_text(self, segments: List[TextSegment]) -> str:
|
213 |
+
"""Reconstruct text from processed segments."""
|
214 |
+
return '\n'.join(segment.content for segment in segments)
|
215 |
+
|
216 |
+
def download_nltk_resources():
|
217 |
+
"""Download required NLTK resources with comprehensive coverage."""
|
218 |
+
try:
|
219 |
+
_create_unverified_https_context = ssl._create_unverified_context
|
220 |
+
except AttributeError:
|
221 |
+
pass
|
222 |
+
else:
|
223 |
+
ssl._create_default_https_context = _create_unverified_https_context
|
224 |
+
|
225 |
+
resources = [
|
226 |
+
'punkt', 'averaged_perceptron_tagger', 'punkt_tab',
|
227 |
+
'wordnet', 'averaged_perceptron_tagger_eng', 'stopwords',
|
228 |
+
'vader_lexicon', 'omw-1.4'
|
229 |
+
]
|
230 |
+
|
231 |
+
for resource in resources:
|
232 |
+
try:
|
233 |
+
nltk.download(resource, quiet=True)
|
234 |
+
logger.info(f"Successfully downloaded {resource}")
|
235 |
+
except Exception as e:
|
236 |
+
logger.warning(f"Could not download {resource}: {str(e)}")
|
237 |
+
|
238 |
+
class StateOfTheArtHumanizer:
|
239 |
+
"""State-of-the-art humanizer with LATEST 2025 models."""
|
240 |
+
|
241 |
+
def __init__(
|
242 |
+
self,
|
243 |
+
sentence_model: str = 'fast', # 🚀 FAST: Uses MiniLM-L6-v2 (fast)
|
244 |
+
paraphrase_model: str = 'fast', # 🎯 FAST: T5-Small
|
245 |
+
text_generation_model: str = 'fast', # 🔥 FAST: T5-Small
|
246 |
+
device: Optional[str] = None,
|
247 |
+
enable_advanced_models: bool = True, # Always enabled for quality
|
248 |
+
model_quality: str = 'fast' # 'premium', 'balanced', 'fast'
|
249 |
+
):
|
250 |
+
"""Initialize with latest 2025 state-of-the-art models."""
|
251 |
+
self.device = device or str(DEVICE)
|
252 |
+
self.enable_advanced_models = enable_advanced_models
|
253 |
+
self.model_quality = model_quality
|
254 |
+
|
255 |
+
# Map model quality to specific models
|
256 |
+
self.sentence_model_name = self._get_model_name('sentence_transformers', sentence_model)
|
257 |
+
self.paraphrase_model_name = self._get_model_name('paraphrasing', paraphrase_model)
|
258 |
+
self.text_gen_model_name = self._get_model_name('text_generation', text_generation_model)
|
259 |
+
|
260 |
+
# Initialize models
|
261 |
+
self.sentence_model = None
|
262 |
+
self.paraphrase_models = {}
|
263 |
+
self.text_gen_model = None
|
264 |
+
|
265 |
+
logger.info(f"🚀 Initializing SOTA Humanizer with:")
|
266 |
+
logger.info(f" 📊 Sentence Model: {self.sentence_model_name}")
|
267 |
+
logger.info(f" 🧠 Paraphrase Model: {self.paraphrase_model_name}")
|
268 |
+
logger.info(f" 🔥 Text Gen Model: {self.text_gen_model_name}")
|
269 |
+
|
270 |
+
self._initialize_models()
|
271 |
+
|
272 |
+
def _get_model_name(self, category: str, quality: str) -> str:
|
273 |
+
"""Get the actual model name from the quality setting."""
|
274 |
+
if quality in LATEST_MODELS[category]:
|
275 |
+
return LATEST_MODELS[category][quality]
|
276 |
+
else:
|
277 |
+
# If specific model name provided, use it directly
|
278 |
+
return quality
|
279 |
+
|
280 |
+
def _initialize_models(self):
|
281 |
+
"""Initialize all models with error handling."""
|
282 |
+
try:
|
283 |
+
# Initialize sentence transformer (BGE-M3 or fallback)
|
284 |
+
logger.info(f"🔄 Loading sentence model: {self.sentence_model_name}")
|
285 |
+
self.sentence_model = SentenceTransformer(self.sentence_model_name, device=self.device)
|
286 |
+
logger.info("✅ Sentence model loaded successfully")
|
287 |
+
|
288 |
+
# Initialize paraphrasing models
|
289 |
+
self._initialize_paraphrase_models(self.paraphrase_model_name)
|
290 |
+
|
291 |
+
# Initialize text generation model (if premium)
|
292 |
+
if self.model_quality == 'premium' and self.enable_advanced_models:
|
293 |
+
self._initialize_text_generation_model()
|
294 |
+
|
295 |
+
except Exception as e:
|
296 |
+
logger.error(f"❌ Model initialization failed: {e}")
|
297 |
+
# Fallback to basic models
|
298 |
+
self._initialize_fallback_models()
|
299 |
+
|
300 |
+
def _initialize_fallback_models(self):
|
301 |
+
"""Initialize fallback models if latest ones fail."""
|
302 |
+
try:
|
303 |
+
logger.info("🔄 Falling back to reliable models...")
|
304 |
+
self.sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device=self.device)
|
305 |
+
self._initialize_paraphrase_models('google-t5/t5-small')
|
306 |
+
logger.info("✅ Fallback models loaded successfully")
|
307 |
+
except Exception as e:
|
308 |
+
logger.error(f"❌ Even fallback models failed: {e}")
|
309 |
+
|
310 |
+
def _initialize_text_generation_model(self):
|
311 |
+
"""Initialize latest text generation model (DeepSeek-R1 or Qwen3)."""
|
312 |
+
try:
|
313 |
+
if 'deepseek' in self.text_gen_model_name.lower():
|
314 |
+
logger.info(f"🚀 Loading DeepSeek model: {self.text_gen_model_name}")
|
315 |
+
# For DeepSeek models, use specific configuration
|
316 |
+
self.text_gen_tokenizer = AutoTokenizer.from_pretrained(self.text_gen_model_name)
|
317 |
+
self.text_gen_model = AutoModelForCausalLM.from_pretrained(
|
318 |
+
self.text_gen_model_name,
|
319 |
+
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32,
|
320 |
+
device_map='auto' if self.device != 'cpu' else None,
|
321 |
+
trust_remote_code=True
|
322 |
+
)
|
323 |
+
logger.info("✅ DeepSeek model loaded successfully")
|
324 |
+
|
325 |
+
elif 'qwen' in self.text_gen_model_name.lower():
|
326 |
+
logger.info(f"🔥 Loading Qwen3 model: {self.text_gen_model_name}")
|
327 |
+
# For Qwen models
|
328 |
+
self.text_gen_tokenizer = AutoTokenizer.from_pretrained(self.text_gen_model_name)
|
329 |
+
self.text_gen_model = AutoModelForCausalLM.from_pretrained(
|
330 |
+
self.text_gen_model_name,
|
331 |
+
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32,
|
332 |
+
device_map='auto' if self.device != 'cpu' else None
|
333 |
+
)
|
334 |
+
logger.info("✅ Qwen3 model loaded successfully")
|
335 |
+
|
336 |
+
else:
|
337 |
+
# Use pipeline for other models
|
338 |
+
self.text_gen_pipeline = pipeline(
|
339 |
+
"text2text-generation",
|
340 |
+
model=self.text_gen_model_name,
|
341 |
+
device=0 if self.device != 'cpu' else -1,
|
342 |
+
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32
|
343 |
+
)
|
344 |
+
logger.info("✅ Text generation pipeline loaded successfully")
|
345 |
+
|
346 |
+
except Exception as e:
|
347 |
+
logger.warning(f"⚠️ Advanced text generation model failed to load: {e}")
|
348 |
+
self.text_gen_model = None
|
349 |
+
|
350 |
+
def _initialize_paraphrase_models(self, model_name: str):
|
351 |
+
"""Initialize paraphrasing models with enhanced capabilities."""
|
352 |
+
try:
|
353 |
+
if 'ul2' in model_name.lower():
|
354 |
+
# Special handling for UL2 model
|
355 |
+
logger.info(f"🏆 Loading UL2 model: {model_name}")
|
356 |
+
self.paraphrase_models['ul2'] = pipeline(
|
357 |
+
"text2text-generation",
|
358 |
+
model=model_name,
|
359 |
+
device=0 if self.device != 'cpu' else -1,
|
360 |
+
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32
|
361 |
+
)
|
362 |
+
logger.info("✅ UL2 model loaded successfully")
|
363 |
+
|
364 |
+
elif 'flan-t5' in model_name.lower():
|
365 |
+
# FLAN-T5 models
|
366 |
+
logger.info(f"🎯 Loading FLAN-T5 model: {model_name}")
|
367 |
+
self.paraphrase_models['flan_t5'] = pipeline(
|
368 |
+
"text2text-generation",
|
369 |
+
model=model_name,
|
370 |
+
device=0 if self.device != 'cpu' else -1,
|
371 |
+
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32
|
372 |
+
)
|
373 |
+
logger.info("✅ FLAN-T5 model loaded successfully")
|
374 |
+
|
375 |
+
else:
|
376 |
+
# Standard T5 models
|
377 |
+
self.paraphrase_models['t5'] = pipeline(
|
378 |
+
"text2text-generation",
|
379 |
+
model=model_name,
|
380 |
+
device=0 if self.device != 'cpu' else -1,
|
381 |
+
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32
|
382 |
+
)
|
383 |
+
logger.info("✅ T5 model loaded successfully")
|
384 |
+
|
385 |
+
except Exception as e:
|
386 |
+
logger.error(f"❌ Paraphrase model initialization failed: {e}")
|
387 |
+
raise
|
388 |
+
|
389 |
+
def paraphrase_sentence(self, sentence: str, model_type: str = 'auto') -> str:
|
390 |
+
"""Advanced paraphrasing with latest models."""
|
391 |
+
if not sentence.strip() or len(sentence.split()) < 5: # Skip very short sentences
|
392 |
+
return sentence
|
393 |
+
|
394 |
+
try:
|
395 |
+
# Choose best available model
|
396 |
+
if model_type == 'auto':
|
397 |
+
if 'ul2' in self.paraphrase_models:
|
398 |
+
model_type = 'ul2'
|
399 |
+
elif 'flan_t5' in self.paraphrase_models:
|
400 |
+
model_type = 'flan_t5'
|
401 |
+
else:
|
402 |
+
model_type = 't5'
|
403 |
+
|
404 |
+
model = self.paraphrase_models.get(model_type)
|
405 |
+
if not model:
|
406 |
+
return sentence
|
407 |
+
|
408 |
+
# Prepare input based on model type - use simple, clean prompts
|
409 |
+
if model_type == 'ul2':
|
410 |
+
input_text = f"Rewrite: {sentence}"
|
411 |
+
elif model_type == 'flan_t5':
|
412 |
+
input_text = f"Rewrite this text: {sentence}"
|
413 |
+
else:
|
414 |
+
# Standard T5 - use basic paraphrase prompt
|
415 |
+
input_text = f"paraphrase: {sentence}"
|
416 |
+
|
417 |
+
# Generate paraphrase with conservative settings
|
418 |
+
result = model(
|
419 |
+
input_text,
|
420 |
+
max_length=min(len(sentence.split()) * 2 + 10, 100), # More conservative length
|
421 |
+
min_length=max(3, len(sentence.split()) - 3),
|
422 |
+
do_sample=True,
|
423 |
+
temperature=0.6, # Lower temperature for more conservative outputs
|
424 |
+
top_p=0.8, # Lower top_p
|
425 |
+
num_return_sequences=1,
|
426 |
+
no_repeat_ngram_size=2,
|
427 |
+
repetition_penalty=1.1
|
428 |
+
)
|
429 |
+
|
430 |
+
paraphrased = result[0]['generated_text'].strip()
|
431 |
+
|
432 |
+
# Enhanced quality checks
|
433 |
+
if self._is_quality_paraphrase_enhanced(sentence, paraphrased):
|
434 |
+
return paraphrased
|
435 |
+
else:
|
436 |
+
return sentence
|
437 |
+
|
438 |
+
except Exception as e:
|
439 |
+
logger.warning(f"⚠️ Paraphrasing failed: {e}")
|
440 |
+
return sentence
|
441 |
+
|
442 |
+
def _is_quality_paraphrase_enhanced(self, original: str, paraphrase: str) -> bool:
|
443 |
+
"""Enhanced quality check for paraphrases with stricter criteria."""
|
444 |
+
if not paraphrase or paraphrase.strip() == original.strip():
|
445 |
+
return False
|
446 |
+
|
447 |
+
# Check for editorial markers or foreign language
|
448 |
+
bad_markers = ['False:', 'Paraphrase:', 'True:', 'Note:', 'Edit:', '[', ']', 'Cette', 'loi', 'aux']
|
449 |
+
if any(marker in paraphrase for marker in bad_markers):
|
450 |
+
return False
|
451 |
+
|
452 |
+
# Check length ratio (shouldn't be too different)
|
453 |
+
length_ratio = len(paraphrase) / len(original)
|
454 |
+
if length_ratio < 0.5 or length_ratio > 2.0:
|
455 |
+
return False
|
456 |
+
|
457 |
+
# Check for broken words or missing spaces
|
458 |
+
if any(len(word) > 20 for word in paraphrase.split()): # Very long words indicate concatenation
|
459 |
+
return False
|
460 |
+
|
461 |
+
# Check semantic similarity if available
|
462 |
+
try:
|
463 |
+
if self.sentence_model:
|
464 |
+
embeddings = self.sentence_model.encode([original, paraphrase])
|
465 |
+
similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
|
466 |
+
|
467 |
+
# Stricter similarity thresholds
|
468 |
+
if 'minilm' in self.sentence_model_name.lower():
|
469 |
+
return 0.7 <= similarity <= 0.95 # Good range for MiniLM
|
470 |
+
else:
|
471 |
+
return 0.65 <= similarity <= 0.95
|
472 |
+
|
473 |
+
return True # Fallback if no sentence model
|
474 |
+
|
475 |
+
except Exception as e:
|
476 |
+
logger.warning(f"⚠️ Quality check failed: {e}")
|
477 |
+
return False
|
478 |
+
|
479 |
+
def generate_with_latest_model(self, prompt: str, max_length: int = 150) -> str:
|
480 |
+
"""Generate text using the latest models (DeepSeek-R1 or Qwen3)."""
|
481 |
+
if not self.text_gen_model:
|
482 |
+
return prompt
|
483 |
+
|
484 |
+
try:
|
485 |
+
if hasattr(self, 'text_gen_tokenizer'):
|
486 |
+
# Direct model inference for DeepSeek/Qwen
|
487 |
+
inputs = self.text_gen_tokenizer.encode(prompt, return_tensors='pt')
|
488 |
+
|
489 |
+
with torch.no_grad():
|
490 |
+
outputs = self.text_gen_model.generate(
|
491 |
+
inputs,
|
492 |
+
max_length=max_length,
|
493 |
+
do_sample=True,
|
494 |
+
temperature=0.7,
|
495 |
+
top_p=0.9,
|
496 |
+
pad_token_id=self.text_gen_tokenizer.eos_token_id
|
497 |
+
)
|
498 |
+
|
499 |
+
generated = self.text_gen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
500 |
+
# Extract only the new generated part
|
501 |
+
new_text = generated[len(prompt):].strip()
|
502 |
+
return prompt + " " + new_text if new_text else prompt
|
503 |
+
|
504 |
+
elif hasattr(self, 'text_gen_pipeline'):
|
505 |
+
# Pipeline inference
|
506 |
+
result = self.text_gen_pipeline(
|
507 |
+
prompt,
|
508 |
+
max_length=max_length,
|
509 |
+
do_sample=True,
|
510 |
+
temperature=0.7,
|
511 |
+
top_p=0.9
|
512 |
+
)
|
513 |
+
return result[0]['generated_text']
|
514 |
+
|
515 |
+
except Exception as e:
|
516 |
+
logger.warning(f"⚠️ Text generation failed: {e}")
|
517 |
+
return prompt
|
518 |
+
|
519 |
+
return prompt
|
520 |
+
|
521 |
+
def _is_quality_paraphrase(self, original: str, paraphrase: str) -> bool:
|
522 |
+
"""Enhanced quality check for paraphrases using latest models."""
|
523 |
+
if not paraphrase or paraphrase.strip() == original.strip():
|
524 |
+
return False
|
525 |
+
|
526 |
+
try:
|
527 |
+
# Check semantic similarity using advanced model
|
528 |
+
if self.sentence_model:
|
529 |
+
embeddings = self.sentence_model.encode([original, paraphrase])
|
530 |
+
similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
|
531 |
+
|
532 |
+
# BGE-M3 and advanced models have different thresholds
|
533 |
+
if 'bge-m3' in self.sentence_model_name.lower():
|
534 |
+
min_similarity = 0.7 # Higher threshold for BGE-M3
|
535 |
+
elif 'mpnet' in self.sentence_model_name.lower():
|
536 |
+
min_similarity = 0.65 # Medium threshold for MPNet
|
537 |
+
else:
|
538 |
+
min_similarity = 0.6 # Standard threshold
|
539 |
+
|
540 |
+
return similarity >= min_similarity
|
541 |
+
|
542 |
+
return True # Fallback if no sentence model
|
543 |
+
|
544 |
+
except Exception as e:
|
545 |
+
logger.warning(f"⚠️ Quality check failed: {e}")
|
546 |
+
return True # Conservative fallback
|
547 |
+
|
548 |
+
def enhance_with_advanced_synonyms(self, text: str) -> str:
|
549 |
+
"""Enhanced synonym replacement using latest models."""
|
550 |
+
if not text.strip():
|
551 |
+
return text
|
552 |
+
|
553 |
+
try:
|
554 |
+
doc = NLP_GLOBAL(text)
|
555 |
+
enhanced_tokens = []
|
556 |
+
|
557 |
+
for token in doc:
|
558 |
+
# Be more conservative with synonym replacement
|
559 |
+
if (token.is_alpha and not token.is_stop and
|
560 |
+
len(token.text) > 4 and token.pos_ in ['NOUN', 'VERB', 'ADJ'] and # Removed 'ADV' and increased min length
|
561 |
+
not token.is_punct and token.lemma_.lower() not in ['say', 'get', 'make', 'take', 'come', 'go']): # Avoid common verbs
|
562 |
+
|
563 |
+
# Use contextual synonym selection with lower probability
|
564 |
+
if random.random() < 0.3: # Only 30% chance of replacement
|
565 |
+
synonym = self._get_contextual_synonym_advanced(
|
566 |
+
token.text, token.pos_, text, token.i
|
567 |
+
)
|
568 |
+
if synonym and len(synonym) <= len(token.text) + 3: # Prevent very long replacements
|
569 |
+
enhanced_tokens.append(synonym + token.whitespace_)
|
570 |
+
else:
|
571 |
+
enhanced_tokens.append(token.text_with_ws)
|
572 |
+
else:
|
573 |
+
enhanced_tokens.append(token.text_with_ws)
|
574 |
+
else:
|
575 |
+
enhanced_tokens.append(token.text_with_ws)
|
576 |
+
|
577 |
+
result = ''.join(enhanced_tokens)
|
578 |
+
|
579 |
+
# Quality check: ensure result is reasonable
|
580 |
+
if len(result) > len(text) * 1.5: # Prevent text expansion beyond 150%
|
581 |
+
return text
|
582 |
+
|
583 |
+
return result
|
584 |
+
|
585 |
+
except Exception as e:
|
586 |
+
logger.warning(f"⚠️ Advanced synonym enhancement failed: {e}")
|
587 |
+
return text
|
588 |
+
|
589 |
+
def _get_contextual_synonym_advanced(self, word: str, pos: str, context: str, position: int) -> Optional[str]:
|
590 |
+
"""Advanced contextual synonym selection using latest models."""
|
591 |
+
try:
|
592 |
+
# Get traditional synonyms first
|
593 |
+
synonyms = self._get_wordnet_synonyms(word, pos)
|
594 |
+
|
595 |
+
if not synonyms or not self.sentence_model:
|
596 |
+
return None
|
597 |
+
|
598 |
+
# Use advanced sentence model for context-aware selection
|
599 |
+
original_sentence = context
|
600 |
+
best_synonym = None
|
601 |
+
best_score = -1
|
602 |
+
|
603 |
+
for synonym in synonyms[:5]: # Limit to top 5 for efficiency
|
604 |
+
# Create candidate sentence with synonym
|
605 |
+
words = context.split()
|
606 |
+
if position < len(words):
|
607 |
+
words[position] = synonym
|
608 |
+
candidate_sentence = ' '.join(words)
|
609 |
+
|
610 |
+
# Calculate semantic similarity
|
611 |
+
embeddings = self.sentence_model.encode([original_sentence, candidate_sentence])
|
612 |
+
similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
|
613 |
+
|
614 |
+
# For advanced models, we want high similarity but some variation
|
615 |
+
if 'bge-m3' in self.sentence_model_name.lower():
|
616 |
+
# BGE-M3 is more nuanced
|
617 |
+
if 0.85 <= similarity <= 0.98 and similarity > best_score:
|
618 |
+
best_score = similarity
|
619 |
+
best_synonym = synonym
|
620 |
+
else:
|
621 |
+
# Standard models
|
622 |
+
if 0.8 <= similarity <= 0.95 and similarity > best_score:
|
623 |
+
best_score = similarity
|
624 |
+
best_synonym = synonym
|
625 |
+
|
626 |
+
return best_synonym
|
627 |
+
|
628 |
+
except Exception as e:
|
629 |
+
logger.warning(f"⚠️ Advanced contextual synonym selection failed: {e}")
|
630 |
+
return None
|
631 |
+
|
632 |
+
def _get_wordnet_synonyms(self, word: str, pos: str) -> List[str]:
|
633 |
+
"""Enhanced WordNet synonym extraction."""
|
634 |
+
try:
|
635 |
+
# Map spaCy POS to WordNet POS
|
636 |
+
pos_map = {
|
637 |
+
'NOUN': wordnet.NOUN,
|
638 |
+
'VERB': wordnet.VERB,
|
639 |
+
'ADJ': wordnet.ADJ,
|
640 |
+
'ADV': wordnet.ADV
|
641 |
+
}
|
642 |
+
|
643 |
+
wn_pos = pos_map.get(pos)
|
644 |
+
if not wn_pos:
|
645 |
+
return []
|
646 |
+
|
647 |
+
synonyms = set()
|
648 |
+
synsets = wordnet.synsets(word.lower(), pos=wn_pos)
|
649 |
+
|
650 |
+
for synset in synsets[:3]: # Top 3 synsets
|
651 |
+
for lemma in synset.lemmas()[:4]: # Top 4 lemmas per synset
|
652 |
+
synonym = lemma.name().replace('_', ' ')
|
653 |
+
if synonym.lower() != word.lower() and len(synonym) > 2:
|
654 |
+
synonyms.add(synonym)
|
655 |
+
|
656 |
+
return list(synonyms)
|
657 |
+
|
658 |
+
except Exception as e:
|
659 |
+
logger.warning(f"⚠️ WordNet synonym extraction failed: {e}")
|
660 |
+
return []
|
661 |
+
|
662 |
+
class AdvancedAcademicTextHumanizer:
|
663 |
+
"""
|
664 |
+
Next-generation text humanizer with state-of-the-art ML models and
|
665 |
+
advanced AI detection avoidance techniques.
|
666 |
+
"""
|
667 |
+
|
668 |
+
def __init__(
|
669 |
+
self,
|
670 |
+
sentence_model: str = 'fast', # OPTIMIZED: Use fast models by default
|
671 |
+
paraphrase_model: str = 'fast', # OPTIMIZED: Use fast models by default
|
672 |
+
p_passive: float = 0.05, # REDUCED: Very conservative passive conversion
|
673 |
+
p_synonym_replacement: float = 0.15, # REDUCED: Conservative synonym replacement
|
674 |
+
p_academic_transition: float = 0.10, # REDUCED: Conservative transitions
|
675 |
+
p_paraphrase: float = 0.10, # REDUCED: Conservative paraphrasing
|
676 |
+
seed: Optional[int] = None,
|
677 |
+
preserve_formatting: bool = True,
|
678 |
+
enable_advanced_models: bool = True, # OPTIMIZED: Always enabled for quality
|
679 |
+
ai_avoidance_mode: bool = True # OPTIMIZED: Always enabled for best results
|
680 |
+
):
|
681 |
+
"""
|
682 |
+
Initialize the advanced text humanizer with cutting-edge capabilities.
|
683 |
+
"""
|
684 |
+
if seed is not None:
|
685 |
+
random.seed(seed)
|
686 |
+
np.random.seed(seed)
|
687 |
+
torch.manual_seed(seed)
|
688 |
+
|
689 |
+
self.nlp = NLP_GLOBAL
|
690 |
+
if self.nlp is None:
|
691 |
+
raise RuntimeError("spaCy model not initialized. Call initialize_nlp() first.")
|
692 |
+
|
693 |
+
# Initialize advanced models
|
694 |
+
self.advanced_humanizer = StateOfTheArtHumanizer(
|
695 |
+
sentence_model=sentence_model,
|
696 |
+
paraphrase_model=paraphrase_model,
|
697 |
+
enable_advanced_models=enable_advanced_models
|
698 |
+
)
|
699 |
+
|
700 |
+
# Transformation probabilities with new advanced features
|
701 |
+
self.p_passive = max(0.0, min(1.0, p_passive))
|
702 |
+
self.p_synonym_replacement = max(0.0, min(1.0, p_synonym_replacement))
|
703 |
+
self.p_academic_transition = max(0.0, min(1.0, p_academic_transition))
|
704 |
+
self.p_paraphrase = max(0.0, min(1.0, p_paraphrase))
|
705 |
+
|
706 |
+
self.preserve_formatting = preserve_formatting
|
707 |
+
self.ai_avoidance_mode = ai_avoidance_mode
|
708 |
+
self.markdown_preserver = AdvancedMarkdownPreserver()
|
709 |
+
|
710 |
+
# Enhanced academic transitions with variety
|
711 |
+
self.academic_transitions = {
|
712 |
+
'addition': [
|
713 |
+
"Moreover,", "Additionally,", "Furthermore,", "In addition,",
|
714 |
+
"What's more,", "Beyond that,", "On top of that,", "Also worth noting,"
|
715 |
+
],
|
716 |
+
'contrast': [
|
717 |
+
"However,", "Nevertheless,", "Nonetheless,", "Conversely,",
|
718 |
+
"On the contrary,", "In contrast,", "That said,", "Yet,"
|
719 |
+
],
|
720 |
+
'causation': [
|
721 |
+
"Therefore,", "Consequently,", "Thus,", "Hence,",
|
722 |
+
"As a result,", "This leads to,", "It follows that,", "Accordingly,"
|
723 |
+
],
|
724 |
+
'emphasis': [
|
725 |
+
"Notably,", "Significantly,", "Importantly,", "Remarkably,",
|
726 |
+
"It's worth emphasizing,", "Particularly noteworthy,", "Crucially,", "Indeed,"
|
727 |
+
],
|
728 |
+
'sequence': [
|
729 |
+
"Subsequently,", "Following this,", "Thereafter,", "Next,",
|
730 |
+
"In the next phase,", "Moving forward,", "Then,", "Later on,"
|
731 |
+
]
|
732 |
+
}
|
733 |
+
|
734 |
+
# Comprehensive contraction mapping
|
735 |
+
self.contraction_map = {
|
736 |
+
"n't": " not", "'re": " are", "'s": " is", "'ll": " will",
|
737 |
+
"'ve": " have", "'d": " would", "'m": " am", "'t": " not",
|
738 |
+
"won't": "will not", "can't": "cannot", "shouldn't": "should not",
|
739 |
+
"wouldn't": "would not", "couldn't": "could not", "mustn't": "must not",
|
740 |
+
"isn't": "is not", "aren't": "are not", "wasn't": "was not",
|
741 |
+
"weren't": "were not", "haven't": "have not", "hasn't": "has not",
|
742 |
+
"hadn't": "had not", "doesn't": "does not", "didn't": "did not",
|
743 |
+
"don't": "do not", "let's": "let us", "that's": "that is",
|
744 |
+
"there's": "there is", "here's": "here is", "what's": "what is",
|
745 |
+
"where's": "where is", "who's": "who is", "it's": "it is"
|
746 |
+
}
|
747 |
+
|
748 |
+
def humanize_text(
|
749 |
+
self,
|
750 |
+
text: str,
|
751 |
+
use_passive: bool = False,
|
752 |
+
use_synonyms: bool = False,
|
753 |
+
use_paraphrasing: bool = False,
|
754 |
+
preserve_paragraphs: bool = True
|
755 |
+
) -> str:
|
756 |
+
"""
|
757 |
+
Advanced text humanization with state-of-the-art techniques.
|
758 |
+
"""
|
759 |
+
if not text or not text.strip():
|
760 |
+
return text
|
761 |
+
|
762 |
+
try:
|
763 |
+
if self.preserve_formatting:
|
764 |
+
return self._humanize_with_advanced_preservation(
|
765 |
+
text, use_passive, use_synonyms, use_paraphrasing, preserve_paragraphs
|
766 |
+
)
|
767 |
+
else:
|
768 |
+
return self._humanize_advanced_simple(text, use_passive, use_synonyms, use_paraphrasing)
|
769 |
+
except Exception as e:
|
770 |
+
logger.error(f"Error during advanced text humanization: {e}")
|
771 |
+
return text
|
772 |
+
|
773 |
+
def _humanize_with_advanced_preservation(
|
774 |
+
self,
|
775 |
+
text: str,
|
776 |
+
use_passive: bool,
|
777 |
+
use_synonyms: bool,
|
778 |
+
use_paraphrasing: bool,
|
779 |
+
preserve_paragraphs: bool
|
780 |
+
) -> str:
|
781 |
+
"""Advanced humanization with comprehensive formatting preservation."""
|
782 |
+
segments = self.markdown_preserver.segment_text(text)
|
783 |
+
|
784 |
+
for segment in segments:
|
785 |
+
if segment.segment_type == 'text' and segment.content.strip():
|
786 |
+
# Apply AI detection avoidance if needed
|
787 |
+
if self.ai_avoidance_mode and segment.ai_probability > 0.6:
|
788 |
+
segment.content = self._apply_ai_avoidance_techniques(
|
789 |
+
segment.content, use_passive, use_synonyms, use_paraphrasing
|
790 |
+
)
|
791 |
+
else:
|
792 |
+
segment.content = self._transform_text_segment_advanced(
|
793 |
+
segment.content, use_passive, use_synonyms, use_paraphrasing
|
794 |
+
)
|
795 |
+
|
796 |
+
return self.markdown_preserver.reconstruct_text(segments)
|
797 |
+
|
798 |
+
def _apply_ai_avoidance_techniques(
|
799 |
+
self,
|
800 |
+
text: str,
|
801 |
+
use_passive: bool,
|
802 |
+
use_synonyms: bool,
|
803 |
+
use_paraphrasing: bool
|
804 |
+
) -> str:
|
805 |
+
"""Apply specialized techniques to avoid AI detection."""
|
806 |
+
try:
|
807 |
+
# 1. Add natural imperfections
|
808 |
+
text = self._add_natural_variations(text)
|
809 |
+
|
810 |
+
# 2. Increase sentence variety
|
811 |
+
text = self._vary_sentence_structure(text)
|
812 |
+
|
813 |
+
# 3. Reduce formal language density
|
814 |
+
text = self._reduce_formality(text)
|
815 |
+
|
816 |
+
# 4. Apply standard transformations
|
817 |
+
text = self._transform_text_segment_advanced(
|
818 |
+
text, use_passive, use_synonyms, use_paraphrasing
|
819 |
+
)
|
820 |
+
|
821 |
+
return text
|
822 |
+
except Exception as e:
|
823 |
+
logger.warning(f"Error in AI avoidance: {e}")
|
824 |
+
return text
|
825 |
+
|
826 |
+
def _add_natural_variations(self, text: str) -> str:
|
827 |
+
"""Add natural human-like variations."""
|
828 |
+
# Add occasional contractions to balance formality
|
829 |
+
if random.random() < 0.3:
|
830 |
+
formal_replacements = {
|
831 |
+
"do not": "don't", "will not": "won't", "cannot": "can't",
|
832 |
+
"should not": "shouldn't", "would not": "wouldn't"
|
833 |
+
}
|
834 |
+
for formal, contraction in formal_replacements.items():
|
835 |
+
if formal in text and random.random() < 0.4:
|
836 |
+
text = text.replace(formal, contraction, 1)
|
837 |
+
|
838 |
+
return text
|
839 |
+
|
840 |
+
def _vary_sentence_structure(self, text: str) -> str:
|
841 |
+
"""Increase sentence structure variety."""
|
842 |
+
sentences = sent_tokenize(text)
|
843 |
+
if len(sentences) < 2:
|
844 |
+
return text
|
845 |
+
|
846 |
+
varied_sentences = []
|
847 |
+
for i, sentence in enumerate(sentences):
|
848 |
+
if i > 0 and random.random() < 0.3:
|
849 |
+
# Occasionally start with different structures
|
850 |
+
starters = ["Well,", "Actually,", "Interestingly,", "To be clear,"]
|
851 |
+
if not any(sentence.startswith(starter) for starter in starters):
|
852 |
+
starter = random.choice(starters)
|
853 |
+
sentence = f"{starter} {sentence.lower()}"
|
854 |
+
|
855 |
+
varied_sentences.append(sentence)
|
856 |
+
|
857 |
+
return ' '.join(varied_sentences)
|
858 |
+
|
859 |
+
def _reduce_formality(self, text: str) -> str:
|
860 |
+
"""Reduce excessive formality to appear more human."""
|
861 |
+
# Replace overly formal words with more natural alternatives
|
862 |
+
formal_to_natural = {
|
863 |
+
'utilize': 'use', 'facilitate': 'help', 'demonstrate': 'show',
|
864 |
+
'implement': 'put in place', 'comprehensive': 'complete',
|
865 |
+
'methodology': 'method', 'substantial': 'large',
|
866 |
+
'numerous': 'many', 'acquire': 'get'
|
867 |
+
}
|
868 |
+
|
869 |
+
for formal, natural in formal_to_natural.items():
|
870 |
+
if formal in text.lower() and random.random() < 0.6:
|
871 |
+
text = re.sub(r'\b' + formal + r'\b', natural, text, flags=re.IGNORECASE)
|
872 |
+
|
873 |
+
return text
|
874 |
+
|
875 |
+
def _transform_text_segment_advanced(
|
876 |
+
self,
|
877 |
+
text: str,
|
878 |
+
use_passive: bool,
|
879 |
+
use_synonyms: bool,
|
880 |
+
use_paraphrasing: bool
|
881 |
+
) -> str:
|
882 |
+
"""Advanced text segment transformation with ML models."""
|
883 |
+
try:
|
884 |
+
doc = self.nlp(text)
|
885 |
+
transformed_sentences = []
|
886 |
+
|
887 |
+
for sent in doc.sents:
|
888 |
+
sentence_str = sent.text.strip()
|
889 |
+
if not sentence_str:
|
890 |
+
continue
|
891 |
+
|
892 |
+
# 1. Expand contractions
|
893 |
+
sentence_str = self.expand_contractions_advanced(sentence_str)
|
894 |
+
|
895 |
+
# 2. Advanced paraphrasing (new!)
|
896 |
+
if use_paraphrasing and random.random() < self.p_paraphrase:
|
897 |
+
paraphrased = self.advanced_humanizer.paraphrase_sentence(sentence_str)
|
898 |
+
if paraphrased != sentence_str:
|
899 |
+
sentence_str = paraphrased
|
900 |
+
|
901 |
+
# 3. Context-aware academic transitions
|
902 |
+
if random.random() < self.p_academic_transition:
|
903 |
+
sentence_str = self.add_contextual_transitions(sentence_str)
|
904 |
+
|
905 |
+
# 4. Advanced passive voice conversion
|
906 |
+
if use_passive and random.random() < self.p_passive:
|
907 |
+
sentence_str = self.convert_to_passive_advanced(sentence_str)
|
908 |
+
|
909 |
+
# 5. Enhanced contextual synonym replacement
|
910 |
+
if use_synonyms and random.random() < self.p_synonym_replacement:
|
911 |
+
sentence_str = self.enhance_with_advanced_synonyms(sentence_str)
|
912 |
+
|
913 |
+
transformed_sentences.append(sentence_str)
|
914 |
+
|
915 |
+
result = ' '.join(transformed_sentences)
|
916 |
+
return result if result.strip() else text
|
917 |
+
|
918 |
+
except Exception as e:
|
919 |
+
logger.warning(f"Error in advanced transformation: {e}")
|
920 |
+
return text
|
921 |
+
|
922 |
+
def expand_contractions_advanced(self, sentence: str) -> str:
|
923 |
+
"""Enhanced contraction expansion with better context handling."""
|
924 |
+
# Handle special cases with regex for better accuracy
|
925 |
+
for contraction, expansion in self.contraction_map.items():
|
926 |
+
if len(contraction) > 3: # Full word contractions
|
927 |
+
pattern = r'\b' + re.escape(contraction) + r'\b'
|
928 |
+
sentence = re.sub(pattern, expansion, sentence, flags=re.IGNORECASE)
|
929 |
+
|
930 |
+
# Handle suffix contractions
|
931 |
+
tokens = word_tokenize(sentence)
|
932 |
+
expanded_tokens = []
|
933 |
+
|
934 |
+
for token in tokens:
|
935 |
+
original_case = token
|
936 |
+
lower_token = token.lower()
|
937 |
+
replaced = False
|
938 |
+
|
939 |
+
for contraction, expansion in self.contraction_map.items():
|
940 |
+
if (len(contraction) <= 3 and
|
941 |
+
lower_token.endswith(contraction) and
|
942 |
+
len(lower_token) > len(contraction)):
|
943 |
+
|
944 |
+
base = lower_token[:-len(contraction)]
|
945 |
+
new_token = base + expansion
|
946 |
+
|
947 |
+
# Preserve capitalization pattern
|
948 |
+
if original_case[0].isupper():
|
949 |
+
new_token = new_token[0].upper() + new_token[1:]
|
950 |
+
|
951 |
+
expanded_tokens.append(new_token)
|
952 |
+
replaced = True
|
953 |
+
break
|
954 |
+
|
955 |
+
if not replaced:
|
956 |
+
expanded_tokens.append(token)
|
957 |
+
|
958 |
+
return ' '.join(expanded_tokens)
|
959 |
+
|
960 |
+
def add_contextual_transitions(self, sentence: str) -> str:
|
961 |
+
"""Add contextually intelligent academic transitions."""
|
962 |
+
sentence_lower = sentence.lower()
|
963 |
+
|
964 |
+
# Enhanced context detection
|
965 |
+
context_patterns = {
|
966 |
+
'contrast': ['but', 'however', 'although', 'while', 'despite', 'whereas'],
|
967 |
+
'causation': ['because', 'since', 'therefore', 'so', 'due to', 'as a result'],
|
968 |
+
'addition': ['also', 'and', 'plus', 'including', 'along with'],
|
969 |
+
'emphasis': ['important', 'significant', 'notable', 'crucial', 'key'],
|
970 |
+
'sequence': ['first', 'second', 'then', 'next', 'finally', 'last']
|
971 |
+
}
|
972 |
+
|
973 |
+
# Determine best transition type
|
974 |
+
best_type = 'addition' # default
|
975 |
+
max_matches = 0
|
976 |
+
|
977 |
+
for transition_type, patterns in context_patterns.items():
|
978 |
+
matches = sum(1 for pattern in patterns if pattern in sentence_lower)
|
979 |
+
if matches > max_matches:
|
980 |
+
max_matches = matches
|
981 |
+
best_type = transition_type
|
982 |
+
|
983 |
+
# Select appropriate transition
|
984 |
+
transition = random.choice(self.academic_transitions[best_type])
|
985 |
+
|
986 |
+
return f"{transition} {sentence}"
|
987 |
+
|
988 |
+
def convert_to_passive_advanced(self, sentence: str) -> str:
|
989 |
+
"""Advanced passive voice conversion with better grammatical accuracy."""
|
990 |
+
try:
|
991 |
+
doc = self.nlp(sentence)
|
992 |
+
|
993 |
+
# Find suitable active voice patterns
|
994 |
+
for token in doc:
|
995 |
+
if (token.pos_ == 'VERB' and
|
996 |
+
token.dep_ == 'ROOT' and
|
997 |
+
token.tag_ in ['VBD', 'VBZ', 'VBP']):
|
998 |
+
|
999 |
+
# Find subject and object
|
1000 |
+
subj = None
|
1001 |
+
obj = None
|
1002 |
+
|
1003 |
+
for child in token.children:
|
1004 |
+
if child.dep_ == 'nsubj':
|
1005 |
+
subj = child
|
1006 |
+
elif child.dep_ in ['dobj', 'pobj']:
|
1007 |
+
obj = child
|
1008 |
+
|
1009 |
+
if subj and obj:
|
1010 |
+
# Create passive transformation
|
1011 |
+
verb_base = token.lemma_
|
1012 |
+
|
1013 |
+
# Choose auxiliary verb
|
1014 |
+
aux = 'was' if subj.tag_ in ['NN', 'NNP'] else 'were'
|
1015 |
+
if token.tag_ in ['VBZ', 'VBP']: # Present tense
|
1016 |
+
aux = 'is' if subj.tag_ in ['NN', 'NNP'] else 'are'
|
1017 |
+
|
1018 |
+
# Create past participle
|
1019 |
+
if verb_base.endswith('e'):
|
1020 |
+
past_participle = verb_base + 'd'
|
1021 |
+
elif verb_base in ['go', 'do', 'be', 'have']:
|
1022 |
+
# Irregular verbs
|
1023 |
+
irregular_map = {'go': 'gone', 'do': 'done', 'be': 'been', 'have': 'had'}
|
1024 |
+
past_participle = irregular_map.get(verb_base, verb_base + 'ed')
|
1025 |
+
else:
|
1026 |
+
past_participle = verb_base + 'ed'
|
1027 |
+
|
1028 |
+
# Construct passive sentence
|
1029 |
+
passive_phrase = f"{obj.text} {aux} {past_participle} by {subj.text}"
|
1030 |
+
|
1031 |
+
# Replace in original sentence
|
1032 |
+
original_phrase = f"{subj.text} {token.text} {obj.text}"
|
1033 |
+
if original_phrase in sentence:
|
1034 |
+
return sentence.replace(original_phrase, passive_phrase)
|
1035 |
+
|
1036 |
+
return sentence
|
1037 |
+
|
1038 |
+
except Exception as e:
|
1039 |
+
logger.warning(f"Error in advanced passive conversion: {e}")
|
1040 |
+
return sentence
|
1041 |
+
|
1042 |
+
def get_advanced_transformation_stats(self, original_text: str, transformed_text: str) -> Dict[str, Union[int, float]]:
|
1043 |
+
"""Get comprehensive transformation statistics with ML analysis."""
|
1044 |
+
orig_tokens = word_tokenize(original_text)
|
1045 |
+
trans_tokens = word_tokenize(transformed_text)
|
1046 |
+
orig_sents = sent_tokenize(original_text)
|
1047 |
+
trans_sents = sent_tokenize(transformed_text)
|
1048 |
+
|
1049 |
+
# Calculate advanced metrics
|
1050 |
+
stats = {
|
1051 |
+
'original_word_count': len(orig_tokens),
|
1052 |
+
'transformed_word_count': len(trans_tokens),
|
1053 |
+
'original_sentence_count': len(orig_sents),
|
1054 |
+
'transformed_sentence_count': len(trans_sents),
|
1055 |
+
'word_change_ratio': len(trans_tokens) / len(orig_tokens) if orig_tokens else 0,
|
1056 |
+
'sentence_change_ratio': len(trans_sents) / len(orig_sents) if orig_sents else 0,
|
1057 |
+
'character_count_original': len(original_text),
|
1058 |
+
'character_count_transformed': len(transformed_text),
|
1059 |
+
}
|
1060 |
+
|
1061 |
+
# Add ML-based analysis
|
1062 |
+
try:
|
1063 |
+
# Semantic similarity
|
1064 |
+
if hasattr(self, 'advanced_humanizer') and self.advanced_humanizer.sentence_model:
|
1065 |
+
embeddings = self.advanced_humanizer.sentence_model.encode([original_text, transformed_text])
|
1066 |
+
semantic_similarity = float(util.cos_sim(embeddings[0], embeddings[1]).item())
|
1067 |
+
stats['semantic_similarity'] = semantic_similarity
|
1068 |
+
|
1069 |
+
# AI detection metrics
|
1070 |
+
original_segments = self.markdown_preserver.segment_text(original_text)
|
1071 |
+
transformed_segments = self.markdown_preserver.segment_text(transformed_text)
|
1072 |
+
|
1073 |
+
orig_ai_scores = [seg.ai_probability for seg in original_segments if seg.segment_type == 'text']
|
1074 |
+
trans_ai_scores = [seg.ai_probability for seg in transformed_segments if seg.segment_type == 'text']
|
1075 |
+
|
1076 |
+
if orig_ai_scores and trans_ai_scores:
|
1077 |
+
stats['original_ai_probability'] = np.mean(orig_ai_scores)
|
1078 |
+
stats['transformed_ai_probability'] = np.mean(trans_ai_scores)
|
1079 |
+
stats['ai_detection_improvement'] = stats['original_ai_probability'] - stats['transformed_ai_probability']
|
1080 |
+
|
1081 |
+
except Exception as e:
|
1082 |
+
logger.warning(f"Error calculating advanced stats: {e}")
|
1083 |
+
|
1084 |
+
return stats
|
1085 |
+
|
1086 |
+
def _humanize_advanced_simple(self, text: str, use_passive: bool, use_synonyms: bool, use_paraphrasing: bool) -> str:
|
1087 |
+
"""Simple advanced transformation without formatting preservation."""
|
1088 |
+
paragraphs = text.split('\n\n')
|
1089 |
+
transformed_paragraphs = []
|
1090 |
+
|
1091 |
+
for paragraph in paragraphs:
|
1092 |
+
if paragraph.strip():
|
1093 |
+
transformed = self._transform_text_segment_advanced(
|
1094 |
+
paragraph, use_passive, use_synonyms, use_paraphrasing
|
1095 |
+
)
|
1096 |
+
transformed_paragraphs.append(transformed)
|
1097 |
+
else:
|
1098 |
+
transformed_paragraphs.append(paragraph)
|
1099 |
+
|
1100 |
+
return '\n\n'.join(transformed_paragraphs)
|