Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,16 +10,25 @@ import spaces
|
|
| 10 |
import torch
|
| 11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
if not torch.cuda.is_available():
|
| 14 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
| 15 |
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
| 18 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 19 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 20 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 21 |
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
if torch.cuda.is_available():
|
| 25 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
@@ -29,23 +38,14 @@ if torch.cuda.is_available():
|
|
| 29 |
add_watermarker=False
|
| 30 |
)
|
| 31 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
|
|
|
|
|
| 32 |
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
| 33 |
pipe.set_adapters("dalle")
|
| 34 |
|
| 35 |
pipe.to("cuda")
|
| 36 |
|
| 37 |
-
|
| 38 |
-
def save_image(img):
|
| 39 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
| 40 |
-
img.save(unique_name)
|
| 41 |
-
return unique_name
|
| 42 |
-
|
| 43 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 44 |
-
if randomize_seed:
|
| 45 |
-
seed = random.randint(0, MAX_SEED)
|
| 46 |
-
return seed
|
| 47 |
-
|
| 48 |
-
@spaces.GPU(duration=30, queue=False)
|
| 49 |
def generate(
|
| 50 |
prompt: str,
|
| 51 |
negative_prompt: str = "",
|
|
@@ -54,32 +54,30 @@ def generate(
|
|
| 54 |
width: int = 1024,
|
| 55 |
height: int = 1024,
|
| 56 |
guidance_scale: float = 3,
|
| 57 |
-
num_inference_steps: int = 10,
|
| 58 |
randomize_seed: bool = False,
|
| 59 |
-
use_resolution_binning: bool = True,
|
| 60 |
progress=gr.Progress(track_tqdm=True),
|
| 61 |
):
|
| 62 |
-
pipe.to(device)
|
| 63 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 64 |
-
generator = torch.Generator().manual_seed(seed)
|
| 65 |
-
|
| 66 |
-
options = {
|
| 67 |
-
"prompt":prompt,
|
| 68 |
-
"negative_prompt":negative_prompt,
|
| 69 |
-
"width":width,
|
| 70 |
-
"height":height,
|
| 71 |
-
"guidance_scale":guidance_scale,
|
| 72 |
-
"num_inference_steps":num_inference_steps,
|
| 73 |
-
"generator":generator,
|
| 74 |
-
"use_resolution_binning":use_resolution_binning,
|
| 75 |
-
"output_type":"pil",
|
| 76 |
-
|
| 77 |
-
}
|
| 78 |
|
| 79 |
-
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
image_paths = [save_image(img) for img in images]
|
|
|
|
| 82 |
return image_paths, seed
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
examples = [
|
|
@@ -112,55 +110,48 @@ with gr.Blocks(css=css) as demo:
|
|
| 112 |
container=False,
|
| 113 |
)
|
| 114 |
run_button = gr.Button("Run", scale=0)
|
| 115 |
-
result = gr.Gallery(label="Result", columns=1)
|
| 116 |
with gr.Accordion("Advanced options", open=False):
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
)
|
| 127 |
seed = gr.Slider(
|
| 128 |
label="Seed",
|
| 129 |
minimum=0,
|
| 130 |
maximum=MAX_SEED,
|
| 131 |
step=1,
|
| 132 |
value=0,
|
|
|
|
| 133 |
)
|
| 134 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 135 |
with gr.Row(visible=True):
|
| 136 |
width = gr.Slider(
|
| 137 |
label="Width",
|
| 138 |
minimum=512,
|
| 139 |
-
maximum=
|
| 140 |
-
step=
|
| 141 |
value=1024,
|
| 142 |
)
|
| 143 |
height = gr.Slider(
|
| 144 |
label="Height",
|
| 145 |
minimum=512,
|
| 146 |
-
maximum=
|
| 147 |
-
step=
|
| 148 |
value=1024,
|
| 149 |
)
|
| 150 |
with gr.Row():
|
| 151 |
guidance_scale = gr.Slider(
|
| 152 |
label="Guidance Scale",
|
| 153 |
minimum=0.1,
|
| 154 |
-
maximum=
|
| 155 |
step=0.1,
|
| 156 |
-
value=
|
| 157 |
-
)
|
| 158 |
-
num_inference_steps = gr.Slider(
|
| 159 |
-
label="Number of inference steps",
|
| 160 |
-
minimum=1,
|
| 161 |
-
maximum=15,
|
| 162 |
-
step=1,
|
| 163 |
-
value=8,
|
| 164 |
)
|
| 165 |
|
| 166 |
gr.Examples(
|
|
@@ -168,7 +159,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 168 |
inputs=prompt,
|
| 169 |
outputs=[result, seed],
|
| 170 |
fn=generate,
|
| 171 |
-
cache_examples=
|
| 172 |
)
|
| 173 |
|
| 174 |
use_negative_prompt.change(
|
|
@@ -193,12 +184,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 193 |
width,
|
| 194 |
height,
|
| 195 |
guidance_scale,
|
| 196 |
-
num_inference_steps,
|
| 197 |
randomize_seed,
|
| 198 |
],
|
| 199 |
outputs=[result, seed],
|
| 200 |
-
api_name="run"
|
| 201 |
)
|
| 202 |
|
| 203 |
if __name__ == "__main__":
|
| 204 |
-
demo.queue(max_size=20).launch()
|
|
|
|
| 10 |
import torch
|
| 11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 12 |
|
| 13 |
+
def save_image(img):
|
| 14 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
| 15 |
+
img.save(unique_name)
|
| 16 |
+
return unique_name
|
| 17 |
+
|
| 18 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 19 |
+
if randomize_seed:
|
| 20 |
+
seed = random.randint(0, MAX_SEED)
|
| 21 |
+
return seed
|
| 22 |
+
|
| 23 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
+
|
| 25 |
if not torch.cuda.is_available():
|
| 26 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
| 27 |
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
USE_TORCH_COMPILE = 0
|
| 31 |
+
ENABLE_CPU_OFFLOAD = 0
|
| 32 |
|
| 33 |
if torch.cuda.is_available():
|
| 34 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
|
|
| 38 |
add_watermarker=False
|
| 39 |
)
|
| 40 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
| 44 |
pipe.set_adapters("dalle")
|
| 45 |
|
| 46 |
pipe.to("cuda")
|
| 47 |
|
| 48 |
+
@spaces.GPU(enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def generate(
|
| 50 |
prompt: str,
|
| 51 |
negative_prompt: str = "",
|
|
|
|
| 54 |
width: int = 1024,
|
| 55 |
height: int = 1024,
|
| 56 |
guidance_scale: float = 3,
|
|
|
|
| 57 |
randomize_seed: bool = False,
|
|
|
|
| 58 |
progress=gr.Progress(track_tqdm=True),
|
| 59 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 62 |
|
| 63 |
+
if not use_negative_prompt:
|
| 64 |
+
negative_prompt = "" # type: ignore
|
| 65 |
+
|
| 66 |
+
images = pipe(
|
| 67 |
+
prompt=prompt,
|
| 68 |
+
negative_prompt=negative_prompt,
|
| 69 |
+
width=width,
|
| 70 |
+
height=height,
|
| 71 |
+
guidance_scale=guidance_scale,
|
| 72 |
+
num_inference_steps=25,
|
| 73 |
+
num_images_per_prompt=1,
|
| 74 |
+
cross_attention_kwargs={"scale": 0.65},
|
| 75 |
+
output_type="pil",
|
| 76 |
+
).images
|
| 77 |
image_paths = [save_image(img) for img in images]
|
| 78 |
+
print(image_paths)
|
| 79 |
return image_paths, seed
|
| 80 |
+
|
| 81 |
|
| 82 |
|
| 83 |
examples = [
|
|
|
|
| 110 |
container=False,
|
| 111 |
)
|
| 112 |
run_button = gr.Button("Run", scale=0)
|
| 113 |
+
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
|
| 114 |
with gr.Accordion("Advanced options", open=False):
|
| 115 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
| 116 |
+
negative_prompt = gr.Text(
|
| 117 |
+
label="Negative prompt",
|
| 118 |
+
lines=4,
|
| 119 |
+
max_lines=6,
|
| 120 |
+
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
|
| 121 |
+
placeholder="Enter a negative prompt",
|
| 122 |
+
visible=True,
|
| 123 |
+
)
|
|
|
|
| 124 |
seed = gr.Slider(
|
| 125 |
label="Seed",
|
| 126 |
minimum=0,
|
| 127 |
maximum=MAX_SEED,
|
| 128 |
step=1,
|
| 129 |
value=0,
|
| 130 |
+
visible=True
|
| 131 |
)
|
| 132 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 133 |
with gr.Row(visible=True):
|
| 134 |
width = gr.Slider(
|
| 135 |
label="Width",
|
| 136 |
minimum=512,
|
| 137 |
+
maximum=2048,
|
| 138 |
+
step=8,
|
| 139 |
value=1024,
|
| 140 |
)
|
| 141 |
height = gr.Slider(
|
| 142 |
label="Height",
|
| 143 |
minimum=512,
|
| 144 |
+
maximum=2048,
|
| 145 |
+
step=8,
|
| 146 |
value=1024,
|
| 147 |
)
|
| 148 |
with gr.Row():
|
| 149 |
guidance_scale = gr.Slider(
|
| 150 |
label="Guidance Scale",
|
| 151 |
minimum=0.1,
|
| 152 |
+
maximum=20.0,
|
| 153 |
step=0.1,
|
| 154 |
+
value=6,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
|
| 157 |
gr.Examples(
|
|
|
|
| 159 |
inputs=prompt,
|
| 160 |
outputs=[result, seed],
|
| 161 |
fn=generate,
|
| 162 |
+
cache_examples=False,
|
| 163 |
)
|
| 164 |
|
| 165 |
use_negative_prompt.change(
|
|
|
|
| 184 |
width,
|
| 185 |
height,
|
| 186 |
guidance_scale,
|
|
|
|
| 187 |
randomize_seed,
|
| 188 |
],
|
| 189 |
outputs=[result, seed],
|
| 190 |
+
api_name="run"
|
| 191 |
)
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
+
demo.queue(max_size=20).launch(show_api=False, debug=False)
|