File size: 11,251 Bytes
45c21ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import random
import uuid
import json

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

# Use environment variables for flexibility
MODEL_ID = os.getenv("MODEL_ID", "sd-community/sdxl-flash")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))  # Allow generating multiple images at once

# Determine device and load model outside of function for efficiency
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# Torch compile for potential speedup (experimental)
if USE_TORCH_COMPILE:
    pipe.compile()

# CPU offloading for larger RAM capacity (experimental)
if ENABLE_CPU_OFFLOAD:
    pipe.enable_model_cpu_offload()

MAX_SEED = np.iinfo(np.int32).max

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=35, enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 30,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,  # Number of images to generate
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    # Improved options handling
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }

    # Use resolution binning for faster generation with less VRAM usage
    if use_resolution_binning:
        options["use_resolution_binning"] = True

    # Generate images potentially in batches
    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)

    image_paths = [save_image(img) for img in images]
    return image_paths, seed

examples = [
    "a cat eating a piece of cheese",
    "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
    "Ironman VS Hulk, ultrarealistic",
    "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
    "An alien holding a sign board containing the word 'Flash', futuristic, neonpunk",
    "Kids going to school, Anime style"
]

css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
    visibility: hidden
}

.wheel-and-hamster {
  --dur: 1s;
  position: relative;
  width: 12em;
  height: 12em;
  font-size: 14px;
}

.wheel,
.hamster,
.hamster div,
.spoke {
  position: absolute;
}

.wheel,
.spoke {
  border-radius: 50%;
  top: 0;
  left: 0;
  width: 100%;
  height: 100%;
}

.wheel {
  background: radial-gradient(100% 100% at center,hsla(0,0%,60%,0) 47.8%,hsl(0,0%,60%) 48%);
  z-index: 2;
}

.hamster {
  animation: hamster var(--dur) ease-in-out infinite;
  top: 50%;
  left: calc(50% - 3.5em);
  width: 7em;
  height: 3.75em;
  transform: rotate(4deg) translate(-0.8em,1.85em);
  transform-origin: 50% 0;
  z-index: 1;
}

.hamster__head {
  animation: hamsterHead var(--dur) ease-in-out infinite;
  background: hsl(30,90%,55%);
  border-radius: 70% 30% 0 100% / 40% 25% 25% 60%;
  box-shadow: 0 -0.25em 0 hsl(30,90%,80%) inset,
		0.75em -1.55em 0 hsl(30,90%,90%) inset;
  top: 0;
  left: -2em;
  width: 2.75em;
  height: 2.5em;
  transform-origin: 100% 50%;
}

.hamster__ear {
  animation: hamsterEar var(--dur) ease-in-out infinite;
  background: hsl(0,90%,85%);
  border-radius: 50%;
  box-shadow: -0.25em 0 hsl(30,90%,55%) inset;
  top: -0.25em;
  right: -0.25em;
  width: 0.75em;
  height: 0.75em;
  transform-origin: 50% 75%;
}

.hamster__eye {
  animation: hamsterEye var(--dur) linear infinite;
  background-color: hsl(0,0%,0%);
  border-radius: 50%;
  top: 0.375em;
  left: 1.25em;
  width: 0.5em;
  height: 0.5em;
}

.hamster__nose {
  background: hsl(0,90%,75%);
  border-radius: 35% 65% 85% 15% / 70% 50% 50% 30%;
  top: 0.75em;
  left: 0;
  width: 0.2em;
  height: 0.25em;
}

.hamster__body {
  animation: hamsterBody var(--dur) ease-in-out infinite;
  background: hsl(30,90%,90%);
  border-radius: 50% 30% 50% 30% / 15% 60% 40% 40%;
  box-shadow: 0.1em 0.75em 0 hsl(30,90%,55%) inset,
		0.15em -0.5em 0 hsl(30,90%,80%) inset;
  top: 0.25em;
  left: 2em;
  width: 4.5em;
  height: 3em;
  transform-origin: 17% 50%;
  transform-style: preserve-3d;
}

.hamster__limb--fr,
.hamster__limb--fl {
  clip-path: polygon(0 0,100% 0,70% 80%,60% 100%,0% 100%,40% 80%);
  top: 2em;
  left: 0.5em;
  width: 1em;
  height: 1.5em;
  transform-origin: 50% 0;
}

.hamster__limb--fr {
  animation: hamsterFRLimb var(--dur) linear infinite;
  background: linear-gradient(hsl(30,90%,80%) 80%,hsl(0,90%,75%) 80%);
  transform: rotate(15deg) translateZ(-1px);
}

.hamster__limb--fl {
  animation: hamsterFLLimb var(--dur) linear infinite;
  background: linear-gradient(hsl(30,90%,80%) 80%,hsl(0,90%,75%) 80%);
  transform: rotate(-60deg) translateZ(-1px);
}

.hamster__limb--br,
.hamster__limb--bl {
  clip-path: polygon(0 0,100% 0,100% 20%,30% 100%,0% 100%);
  top: 1.25em;
  left: 2.8em;
  width: 1.5em;
  height: 2.5em;
  transform-origin: 33% 10%;
}

.hamster__limb--br {
  animation: hamsterBRLimb var(--dur) linear infinite;
  background: linear-gradient(hsl(0,90%,75%) 40%,hsl(30,90%,80%) 40%);
  transform: rotate(-15deg) translateZ(-1px);
}

.hamster__limb--bl {
  animation: hamsterBLLimb var(--dur) linear infinite;
  background: linear-gradient(hsl(0,90%,75%) 40%,hsl(30,90%,80%) 40%);
  transform: rotate(60deg) translateZ(-1px);
}

.hamster__tail {
  animation: hamsterTail var(--dur) linear infinite;
  background: hsl(0,90%,85%);
  border-radius: 0.25em 50% 50% 0.25em;
  box-shadow: 0.25em 0 hsl(30,90%,55%) inset;
  top: 1.5em;
  left: 5.5em;
  width: 0.5em;
  height: 0.75em;
  transform: rotate(30deg) translateZ(-1px);
  transform-origin: 0.25em 0.125em;
}

.spoke {
  background: radial-gradient(hsl(0,0%,70%) 25%,hsla(0,0%,60%,0) 26%) center/8px 8px;
  z-index: 0;
}

.spoke--1 {
  animation: spoke var(--dur) linear infinite;
}

.spoke--2 {
  animation: spoke var(--dur) linear infinite;
  transform: rotate(30deg);
}

.spoke--3 {
  animation: spoke var(--dur) linear infinite;
  transform: rotate(60deg);
}

@keyframes hamster {
  0%,100% { transform: rotate(4deg) translate(-0.8em,1.85em) }
  50% { transform: rotate(0) translate(-0.8em,1.85em) }
}

@keyframes hamsterHead {
  0%,100% { transform: rotate(0) }
  50% { transform: rotate(-8deg) }
}

@keyframes hamsterEar {
  0%,100% { transform: rotate(0) }
  50% { transform: rotate(-3deg) }
}

@keyframes hamsterEye {
  0%,90%,100% { transform: scaleY(1) }
  95% { transform: scaleY(0) }
}

@keyframes hamsterBody {
  0%,100% { transform: rotate(0) }
  50% { transform: rotate(2deg) }
}

@keyframes hamsterFRLimb {
  0%,100% { transform: rotate(15deg) translateZ(-1px) }
  50% { transform: rotate(-30deg) translateZ(-1px) }
}

@keyframes hamsterFLLimb {
  0%,100% { transform: rotate(-60deg) translateZ(-1px) }
  50% { transform: rotate(-25deg) translateZ(-1px) }
}

@keyframes hamsterBRLimb {
  0%,100% { transform: rotate(-15deg) translateZ(-1px) }
  50% { transform: rotate(30deg) translateZ(-1px) }
}

@keyframes hamsterBLLimb {
  0%,100% { transform: rotate(60deg) translateZ(-1px) }
  50% { transform: rotate(25deg) translateZ(-1px) }
}

@keyframes hamsterTail {
  0%,100% { transform: rotate(30deg) translateZ(-1px) }
  50% { transform: rotate(10deg) translateZ(-1px) }
}

@keyframes spoke {
  0% { transform: rotate(0) }
  100% { transform: rotate(1turn) }
}
'''

html = '''
<div id="loading-animation" style="display: flex; justify-content: center; align-items: center; height: 100vh;">
  <div class="wheel-and-hamster">
    <div class="wheel"></div>
    <div class="hamster">
      <div class="hamster__body">
        <div class="hamster__head">
          <div class="hamster__ear"></div>
          <div class="hamster__eye"></div>
          <div class="hamster__nose"></div>
        </div>
        <div class="hamster__limb hamster__limb--fr"></div>
        <div class="hamster__limb hamster__limb--fl"></div>
        <div class="hamster__limb hamster__limb--br"></div>
        <div class="hamster__limb hamster__limb--bl"></div>
        <div class="hamster__tail"></div>
      </div>
    </div>
    <div class="spoke spoke--1"></div>
    <div class="spoke spoke--2"></div>
    <div class="spoke spoke--3"></div>
  </div>
</div>
<script>
  window.onload = function() {
    document.getElementById("loading-animation").style.display = "none";
  }
</script>
'''

with gr.Blocks(css=css) as demo:
    gr.HTML(html)
    gr.Markdown("# Flash Attention with SDXL")
    gr.Markdown("Generate images with Flash Attention and SDXL")

    with gr.Row():
        with gr.Column(scale=55):
            prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt").style(container=False)
            negative_prompt = gr.Textbox(label="Negative Prompt", show_label=False, max_lines=2, placeholder="Enter negative prompt").style(container=False)
        with gr.Column(scale=45):
            generate_btn = gr.Button("Generate")

    with gr.Row():
        image_output = gr.Gallery(label="Generated Images").style(grid=2, height="auto")
        seed_output = gr.Number(label="Seed Used")

    gr.Examples(examples=examples, inputs=[prompt])

    inputs = [prompt, negative_prompt, gr.Checkbox(False, label="Use Negative Prompt"), gr.Slider(1, MAX_SEED, value=1, label="Seed"),
              gr.Slider(256, MAX_IMAGE_SIZE, value=1024, label="Width"), gr.Slider(256, MAX_IMAGE_SIZE, value=1024, label="Height"),
              gr.Slider(1, 20, value=7.5, label="Guidance Scale"), gr.Slider(1, 100, value=30, label="Number of Inference Steps"),
              gr.Checkbox(False, label="Randomize Seed"), gr.Checkbox(True, label="Use Resolution Binning"),
              gr.Slider(1, 10, value=1, label="Number of Images")]

    generate_btn.click(fn=generate, inputs=inputs, outputs=[image_output, seed_output])

demo.launch()