Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,386 Bytes
d5336ec a6638ea 4c1a95a a6638ea 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 4c1a95a a15de80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
#!/usr/bin/env python
#patch 0.01yle(collage_style, prompt, negative_prompt)
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL
from huggingface_hub import snapshot_download
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
model_path = snapshot_download(
repo_id="stabilityai/stable-diffusion-3-medium",
revision="refs/pr/26",
repo_type="model",
ignore_patterns=["*.md", "*.gitattributes"],
local_dir="stable-diffusion-3-medium",
token=huggingface_token, # yeni bir token-id yazın.
)
DESCRIPTION = """# Stable Diffusion 3"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
# Define styles and collage templates
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
collage_style_list = [
{
"name": "B & W",
"prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast",
"negative_prompt": "colorful, vibrant, bright, flashy",
},
{
"name": "Polaroid",
"prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic",
"negative_prompt": "digital, modern, low quality, blurry",
},
{
"name": "Watercolor",
"prompt": "watercolor collage of {prompt}. soft edges, translucent colors, painterly effects",
"negative_prompt": "digital, sharp lines, solid colors",
},
{
"name": "Cinematic",
"prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting",
"negative_prompt": "static, lifeless, mundane",
},
{
"name": "Nostalgic",
"prompt": "nostalgic collage of {prompt}. retro imagery, vintage objects, sentimental journey",
"negative_prompt": "contemporary, futuristic, forward-looking",
},
{
"name": "Vintage",
"prompt": "vintage collage of {prompt}. aged paper, sepia tones, retro imagery, antique vibes",
"negative_prompt": "modern, contemporary, futuristic, high-tech",
},
{
"name": "Scrapbook",
"prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles",
"negative_prompt": "clean, digital, modern, low quality",
},
{
"name": "NeoNGlow",
"prompt": "neon glow collage of {prompt}. vibrant colors, glowing effects, futuristic vibes",
"negative_prompt": "dull, muted colors, vintage, retro",
},
{
"name": "Geometric",
"prompt": "geometric collage of {prompt}. abstract shapes, colorful, sharp edges, modern design, high quality",
"negative_prompt": "blurry, low quality, traditional, dull",
},
{
"name": "Thematic",
"prompt": "thematic collage of {prompt}. cohesive theme, well-organized, matching colors, creative layout",
"negative_prompt": "random, messy, unorganized, clashing colors",
},
{
"name": "Retro Pop",
"prompt": "retro pop art collage of {prompt}. bold colors, comic book style, halftone dots, vintage ads",
"negative_prompt": "subdued colors, minimalist, modern, subtle",
},
{
"name": "No Style",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
collage_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in collage_style_list}
STYLE_NAMES = list(styles.keys())
COLLAGE_STYLE_NAMES = list(collage_styles.keys())
DEFAULT_STYLE_NAME = "3840 x 2160"
DEFAULT_COLLAGE_STYLE_NAME = "B & W"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
elif style_name in collage_styles:
p, n = collage_styles.get(style_name, collage_styles[DEFAULT_COLLAGE_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style: str = DEFAULT_STYLE_NAME,
collage_style: str = DEFAULT_COLLAGE_STYLE_NAME,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 7,
randomize_seed: bool = False,
num_inference_steps=30,
NUM_IMAGES_PER_PROMPT=1,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
pipe.to(device)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
if collage_style != "No Style":
prompt, negative_prompt = apply_style(collage_style, prompt, negative_prompt)
else:
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
if not use_negative_prompt:
negative_prompt = None # type: ignore
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
output_type="pil",
).images
return output
examples = [
"A red sofa on top of a white building.",
"A cardboard which is large and sits on a theater stage.",
"A painting of an astronaut riding a pig wearing a tutu holding a pink umbrella.",
"Studio photograph closeup of a chameleon over a black background.",
"Closeup portrait photo of beautiful goth woman, makeup.",
"A living room, bright modern Scandinavian style house, large windows.",
"Portrait photograph of an anthropomorphic tortoise seated on a New York City subway train.",
"Batman, cute modern Disney style, Pixar 3d portrait, ultra detailed, gorgeous, 3d zbrush, trending on dribbble, 8k render.",
"Cinnamon bun on the plate, watercolor painting, detailed, brush strokes, light palette, light, cozy.",
"A lion, colorful, low-poly, cyan and orange eyes, poly-hd, 3d, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition.",
"Long exposure photo of Tokyo street, blurred motion, streaks of light, surreal, dreamy, ghosting effect, highly detailed.",
"A glamorous digital magazine photoshoot, a fashionable model wearing avant-garde clothing, set in a futuristic cyberpunk roof-top environment, with a neon-lit city background, intricate high fashion details, backlit by vibrant city glow, Vogue fashion photography.",
"Masterpiece, best quality, girl, collarbone, wavy hair, looking at viewer, blurry foreground, upper body, necklace, contemporary, plain pants, intricate, print, pattern, ponytail, freckles, red hair, dappled sunlight, smile, happy."
]
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<h1 style='text-align: center'>
Stable Diffusion 3 Medium
</h1>
"""
)
gr.HTML(
"""
"""
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
visible=True,
)
style_selection = gr.Dropdown(
label="Style",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
)
collage_style_selection = gr.Dropdown(
label="Collage Template",
choices=COLLAGE_STYLE_NAMES,
value=DEFAULT_COLLAGE_STYLE_NAME,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
steps = gr.Slider(
label="Steps",
minimum=0,
maximum=60,
step=1,
value=30,
)
number_image = gr.Slider(
label="Number of Image",
minimum=1,
maximum=4,
step=1,
value=2,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=7.0,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
collage_style_selection,
seed,
width,
height,
guidance_scale,
randomize_seed,
steps,
number_image,
],
outputs=[result],
api_name="run",
)
if __name__ == "__main__":
demo.queue().launch() |