File size: 13,593 Bytes
4c1a95a
 
 
 
 
 
 
 
 
 
 
 
723a539
4c1a95a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d94da9
4c1a95a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#path1.0398
import os
import random
import uuid
import json

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import DiffusionPipeline
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
from typing import Tuple

# BaseConditions
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative","")

def check_text(prompt, negative=""):
    for i in bad_words:
        if i in prompt:
            return True
    for i in bad_words_negative:
        if i in negative:
            return True
    return False

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]

collage_style_list = [


    {
        "name": "B & W",
        "prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast",
        "negative_prompt": "colorful, vibrant, bright, flashy",
    },

    {
        "name": "Polaroid",
        "prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic",
        "negative_prompt": "digital, modern, low quality, blurry",
    },
    
    {
        "name": "Watercolor",
        "prompt": "watercolor collage of {prompt}. soft edges, translucent colors, painterly effects",
        "negative_prompt": "digital, sharp lines, solid colors",
    },

    {
        "name": "Cinematic",
        "prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting",
        "negative_prompt": "static, lifeless, mundane",
    },
    
    {
        "name": "Nostalgic",
        "prompt": "nostalgic collage of {prompt}. retro imagery, vintage objects, sentimental journey",
        "negative_prompt": "contemporary, futuristic, forward-looking",
    },

    {
        "name": "Vintage",
        "prompt": "vintage collage of {prompt}. aged paper, sepia tones, retro imagery, antique vibes",
        "negative_prompt": "modern, contemporary, futuristic, high-tech",
    },
    
    {
        "name": "Scrapbook",
        "prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles",
        "negative_prompt": "clean, digital, modern, low quality",
    },
    
    {
        "name": "NeoNGlow",
        "prompt": "neon glow collage of {prompt}. vibrant colors, glowing effects, futuristic vibes",
        "negative_prompt": "dull, muted colors, vintage, retro",
    },
    
    {
        "name": "Geometric",
        "prompt": "geometric collage of {prompt}. abstract shapes, colorful, sharp edges, modern design, high quality",
        "negative_prompt": "blurry, low quality, traditional, dull",
    },
    {
        "name": "Thematic",
        "prompt": "thematic collage of {prompt}. cohesive theme, well-organized, matching colors, creative layout",
        "negative_prompt": "random, messy, unorganized, clashing colors",
    },

    {
        "name": "Retro Pop",
        "prompt": "retro pop art collage of {prompt}. bold colors, comic book style, halftone dots, vintage ads",
        "negative_prompt": "subdued colors, minimalist, modern, subtle",
    },


    {
        "name": "No Style",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
collage_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in collage_style_list}
STYLE_NAMES = list(styles.keys())
COLLAGE_STYLE_NAMES = list(collage_styles.keys())
DEFAULT_STYLE_NAME = "3840 x 2160"
DEFAULT_COLLAGE_STYLE_NAME = "B & W"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    elif style_name in collage_styles:
        p, n = collage_styles.get(style_name, collage_styles[DEFAULT_COLLAGE_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]
    
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

DESCRIPTION = """"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

if torch.cuda.is_available():
    pipe = DiffusionPipeline.from_pretrained(
        "stabilityai/stable-diffusion-3-medium",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16"
    ).to(device)

    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)
        print("Loaded on Device!")

    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")

def save_image(img, path):
    img.save(path)

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style: str = DEFAULT_STYLE_NAME,
    collage_style: str = DEFAULT_COLLAGE_STYLE_NAME,
    grid_size: str = "2x2",
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    if check_text(prompt, negative_prompt):
        raise ValueError("Prompt contains restricted words.")
    
    if collage_style != "No Style":
        prompt, negative_prompt = apply_style(collage_style, prompt, negative_prompt)
    else:
        prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
    
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = ""  # type: ignore
    negative_prompt += default_negative    

    grid_sizes = {
        "2x1": (2, 1),
        "1x2": (1, 2),
        "2x2": (2, 2),
        "2x3": (2, 3),
        "3x2": (3, 2),
        "1x1": (1, 1)
    }
    
    grid_size_x, grid_size_y = grid_sizes.get(grid_size, (2, 2))
    num_images = grid_size_x * grid_size_y

    options = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": 20,
        "generator": generator,
        "num_images_per_prompt": num_images,
        "use_resolution_binning": use_resolution_binning,
        "output_type": "pil",
    }
    
    torch.cuda.empty_cache()  # Clear GPU memory
    images = pipe(**options).images

    grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))

    for i, img in enumerate(images[:num_images]):
        grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))

    unique_name = str(uuid.uuid4()) + ".png"
    save_image(grid_img, unique_name)
    return [unique_name], seed

examples = [

    "Portrait of a beautiful woman in a hat, summer outfit, with freckles on her face, in a close up shot, with sunlight, outdoors, in soft light, with a beach background, looking at the camera, with high resolution photography, in the style of Hasselblad X2D50c --ar 85:128 --v 6.0 --style raw",
    "Flying food photography with [Two Burgers] as the main subject, Splashes of Toppings and Seasonings, [Rocket Lettuce], [Cheddar Flavored Cheese], [Onion], [Pickles], [Special Sauce], [Sesame Bun], [ sea salt crystals] ::3 Capturing the dynamic splashes of food using high-speed photography , photorealistic, surrealism style, [white background], trending background [clean], Minimalist ::2 [Cuware], [Table], [ Steam], [Smoke], [Vegetable Leaves], [Tomato] ::-0.5 Ad Posters, Pro-Grade Color Grading, Studio Lighting, Rim Lights, [Layered Comps], EOS-1D X Mark III, 500px, Behance, concept art"
    
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run")
        result = gr.Gallery(label="Grid", columns=1, preview=True)

    with gr.Row(visible=True):
        collage_style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=COLLAGE_STYLE_NAMES,
            value=DEFAULT_COLLAGE_STYLE_NAME,
            label="Collage Template",
        )
    with gr.Row(visible=True):
        grid_size_selection = gr.Dropdown(
            choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
            value="2x2",
            label="Grid Size"
        )
    with gr.Row(visible=True):
        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Style",
        )
 
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
            visible=True,
        )
        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Steps",
                minimum=10,
                maximum=30,
                step=1,
                value=15,
            )
        with gr.Row():
            num_images_per_prompt = gr.Slider(
                label="Images",
                minimum=1,
                maximum=5,
                step=1,
                value=2,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )


            
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=6,
            )
 


    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            collage_style_selection,
            grid_size_selection,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()