Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,325 Bytes
029cd9d 9d8f34f 45c21ee 9d8f34f 45c21ee 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f 029cd9d 45c21ee 9d8f34f 45c21ee 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f cfb06b1 9d8f34f 45c21ee 9d8f34f 45c21ee 029cd9d 45c21ee 029cd9d 45c21ee 029cd9d 45c21ee 9d8f34f 45c21ee 9d8f34f 45c21ee 9d8f34f 45c21ee 9d8f34f 45c21ee 9d8f34f 45c21ee 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f 029cd9d bd2c7b2 029cd9d b09d95b 029cd9d bd2c7b2 029cd9d 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f 029cd9d 9d8f34f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
#!/usr/bin/env python
# Patch3.09
import os
import random
import uuid
import gdown
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
DESCRIPTION = """ """
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU, This Space may not work on CPU.</p>"
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Download the LoRA weights from Google Drive
drive_folder_url = "https://drive.google.com/drive/folders/1ExL5VNChyYWXho1QbgNbOkTK3xc8mhHW"
weight_file_id = "18n6gF7Jda92MpqK7cYs0Gv2IqLAVnltZ"
weight_file_name = "pytorch_lora_weights.safetensors"
# Use gdown to download the file
gdown.download(f"https://drive.google.com/uc?id={weight_file_id}", weight_file_name, quiet=False)
pipe.load_lora_weights(weight_file_name, adapter_name="icon")
pipe.set_adapters("icon")
pipe.to("cuda")
@spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = "" # type: ignore
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=25,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"1boy, male focus, sky, star (sky), night, pointing up, night sky, hood down, starry sky, hood, blue theme, outdoors, long sleeves, shooting star, hoodie, short hair, jacket, scenery, cloud, from behind, blue eyes, best quality, amazing quality, best aesthetic, absurdres",
"1boy, male focus, bishounen, holding sword, holding weapon, katana, sword, japanese clothes, haori, east asian architecture, solo, looking at viewer, expressionless, blue hair, purple eyes, long hair, best quality, amazing quality, best aesthetic, absurdres",
"1boy, male focus, holding drink, holding, drink, toned male, toned, pectorals, jacket, open jacket, open clothes, tank top, chain necklace, necklace, stud earrings, earrings, jewelry, cafe, plant, indoors, lens flare, solo, looking at viewer, open mouth, fang, white hair, yellow eyes, short hair, best quality, amazing quality, best aesthetic, absurdres, year 2023",
"1boy, male focus, dark-skinned male, dark skin, squatting, heart hands, bara, wooden floor, floor, indoors, gym uniform, sneakers, shoes, solo, looking at viewer, frown, sweatdrop, very short hair, best quality, amazing quality, best aesthetic, absurdres, year 2023",
"1boy, male focus, short hair, blue hair, blue eyes, graphic t-shirt, punk t-shirt, digital illustration, cyan and black, looking at viewer, busy city street, belt, black pants, atmospheric lighting, midriff peek, night, blurry, best quality, amazing quality, best aesthetic, absurdres",
"Ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K"
]
css = '''
.gradio-container{max-width: 600px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css, theme="ParityError/Anime") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=False,
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
lines=4,
max_lines=6,
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation""",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=6,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False)
|