prithivMLmods commited on
Commit
79caef1
·
verified ·
1 Parent(s): 8a49f41

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -20
app.py CHANGED
@@ -12,15 +12,11 @@ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
12
  #Load the HTML content
13
  #html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
14
  #html_content = f'<iframe src="{html_file_url}" style="width:100%; height:180px; border:none;"></iframe>'
15
-
16
-
17
  html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
18
  html_content = f'<iframe src="{html_file_url}" style="width:100%; height:200px; border:none"></iframe>'
19
 
20
-
21
  DESCRIPTIONx = """## STABLE HAMSTER
22
  """
23
-
24
  css = '''
25
  .gradio-container{max-width: 560px !important}
26
  h1{text-align:center}
@@ -38,15 +34,17 @@ examples = [
38
  "Kids going to school, Anime style"
39
  ]
40
 
41
-
42
- #Use environment variables for flexibility
 
 
43
  MODEL_ID = os.getenv("MODEL_REPO")
44
  MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
45
  USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
46
  ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
47
  BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
48
 
49
- # Determine device and load model outside of function for efficiency
50
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
51
  pipe = StableDiffusionXLPipeline.from_pretrained(
52
  MODEL_ID,
@@ -56,11 +54,11 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
56
  ).to(device)
57
  pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
58
 
59
- # Torch compile for potential speedup (experimental)
60
  if USE_TORCH_COMPILE:
61
  pipe.compile()
62
 
63
- # CPU offloading for larger RAM capacity (experimental)
64
  if ENABLE_CPU_OFFLOAD:
65
  pipe.enable_model_cpu_offload()
66
 
@@ -76,7 +74,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
76
  seed = random.randint(0, MAX_SEED)
77
  return seed
78
 
79
- @spaces.GPU(duration=35, enable_queue=True)
80
  def generate(
81
  prompt: str,
82
  negative_prompt: str = "",
@@ -85,7 +83,7 @@ def generate(
85
  width: int = 1024,
86
  height: int = 1024,
87
  guidance_scale: float = 3,
88
- num_inference_steps: int = 30,
89
  randomize_seed: bool = False,
90
  use_resolution_binning: bool = True,
91
  num_images: int = 1, # Number of images to generate
@@ -94,7 +92,7 @@ def generate(
94
  seed = int(randomize_seed_fn(seed, randomize_seed))
95
  generator = torch.Generator(device=device).manual_seed(seed)
96
 
97
- # Improved options handling
98
  options = {
99
  "prompt": [prompt] * num_images,
100
  "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
@@ -106,11 +104,11 @@ def generate(
106
  "output_type": "pil",
107
  }
108
 
109
- # Use resolution binning for faster generation with less VRAM usage
110
  if use_resolution_binning:
111
  options["use_resolution_binning"] = True
112
 
113
- # Generate images potentially in batches
114
  images = []
115
  for i in range(0, num_images, BATCH_SIZE):
116
  batch_options = options.copy()
@@ -121,8 +119,7 @@ def generate(
121
 
122
  image_paths = [save_image(img) for img in images]
123
  return image_paths, seed
124
-
125
-
126
  with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
127
  gr.Markdown(DESCRIPTIONx)
128
  with gr.Group():
@@ -188,7 +185,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
188
  num_inference_steps = gr.Slider(
189
  label="Number of inference steps",
190
  minimum=1,
191
- maximum=15,
192
  step=1,
193
  value=8,
194
  )
@@ -227,9 +224,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
227
  ],
228
  outputs=[result, seed],
229
  api_name="run",
230
- )
231
-
232
-
233
  gr.HTML(html_content)
234
  if __name__ == "__main__":
235
  demo.queue(max_size=50).launch()
 
12
  #Load the HTML content
13
  #html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
14
  #html_content = f'<iframe src="{html_file_url}" style="width:100%; height:180px; border:none;"></iframe>'
 
 
15
  html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
16
  html_content = f'<iframe src="{html_file_url}" style="width:100%; height:200px; border:none"></iframe>'
17
 
 
18
  DESCRIPTIONx = """## STABLE HAMSTER
19
  """
 
20
  css = '''
21
  .gradio-container{max-width: 560px !important}
22
  h1{text-align:center}
 
34
  "Kids going to school, Anime style"
35
  ]
36
 
37
+ #Set an os.Getenv variable
38
+ #set VAR_NAME=”VALUE”
39
+ #Fetch an environment variable
40
+ #echo %VAR_NAME%
41
  MODEL_ID = os.getenv("MODEL_REPO")
42
  MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
43
  USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
44
  ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
45
  BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
46
 
47
+ #Load model outside of function
48
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
49
  pipe = StableDiffusionXLPipeline.from_pretrained(
50
  MODEL_ID,
 
54
  ).to(device)
55
  pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
56
 
57
+ # <compile speedup >
58
  if USE_TORCH_COMPILE:
59
  pipe.compile()
60
 
61
+ # Offloading capacity (RAM)
62
  if ENABLE_CPU_OFFLOAD:
63
  pipe.enable_model_cpu_offload()
64
 
 
74
  seed = random.randint(0, MAX_SEED)
75
  return seed
76
 
77
+ @spaces.GPU(duration=60, enable_queue=True)
78
  def generate(
79
  prompt: str,
80
  negative_prompt: str = "",
 
83
  width: int = 1024,
84
  height: int = 1024,
85
  guidance_scale: float = 3,
86
+ num_inference_steps: int = 25,
87
  randomize_seed: bool = False,
88
  use_resolution_binning: bool = True,
89
  num_images: int = 1, # Number of images to generate
 
92
  seed = int(randomize_seed_fn(seed, randomize_seed))
93
  generator = torch.Generator(device=device).manual_seed(seed)
94
 
95
+ #Options
96
  options = {
97
  "prompt": [prompt] * num_images,
98
  "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
 
104
  "output_type": "pil",
105
  }
106
 
107
+ #VRAM usage Lesser
108
  if use_resolution_binning:
109
  options["use_resolution_binning"] = True
110
 
111
+ #Images potential batches
112
  images = []
113
  for i in range(0, num_images, BATCH_SIZE):
114
  batch_options = options.copy()
 
119
 
120
  image_paths = [save_image(img) for img in images]
121
  return image_paths, seed
122
+ #Main gr.Block
 
123
  with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
124
  gr.Markdown(DESCRIPTIONx)
125
  with gr.Group():
 
185
  num_inference_steps = gr.Slider(
186
  label="Number of inference steps",
187
  minimum=1,
188
+ maximum=25,
189
  step=1,
190
  value=8,
191
  )
 
224
  ],
225
  outputs=[result, seed],
226
  api_name="run",
227
+ )
 
 
228
  gr.HTML(html_content)
229
  if __name__ == "__main__":
230
  demo.queue(max_size=50).launch()