Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ import torch
|
|
13 |
from diffusers import DiffusionPipeline
|
14 |
from typing import Tuple
|
15 |
|
16 |
-
#Check for the Model Base..//
|
17 |
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
|
18 |
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
|
19 |
default_negative = os.getenv("default_negative","")
|
@@ -26,11 +26,9 @@ def check_text(prompt, negative=""):
|
|
26 |
if i in negative:
|
27 |
return True
|
28 |
return False
|
29 |
-
#End of the - Prompt Con
|
30 |
-
|
31 |
|
32 |
style_list = [
|
33 |
-
|
34 |
{
|
35 |
"name": "3840 x 2160",
|
36 |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
@@ -58,18 +56,9 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
|
|
58 |
negative = ""
|
59 |
return p.replace("{prompt}", positive), n + negative
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
DESCRIPTION = """## MidJourney 3D
|
66 |
-
|
67 |
"""
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
if not torch.cuda.is_available():
|
74 |
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
|
75 |
|
@@ -85,13 +74,6 @@ NUM_IMAGES_PER_PROMPT = 1
|
|
85 |
|
86 |
if torch.cuda.is_available():
|
87 |
pipe = DiffusionPipeline.from_pretrained(
|
88 |
-
"yodayo-ai/kivotos-xl-2.0",
|
89 |
-
torch_dtype=torch.float16,
|
90 |
-
use_safetensors=True,
|
91 |
-
add_watermarker=False,
|
92 |
-
variant="fp16"
|
93 |
-
)
|
94 |
-
pipe2 = DiffusionPipeline.from_pretrained(
|
95 |
"Yntec/3Danimation",
|
96 |
torch_dtype=torch.float16,
|
97 |
use_safetensors=True,
|
@@ -100,15 +82,12 @@ if torch.cuda.is_available():
|
|
100 |
)
|
101 |
if ENABLE_CPU_OFFLOAD:
|
102 |
pipe.enable_model_cpu_offload()
|
103 |
-
pipe2.enable_model_cpu_offload()
|
104 |
else:
|
105 |
pipe.to(device)
|
106 |
-
pipe2.to(device)
|
107 |
print("Loaded on Device!")
|
108 |
|
109 |
if USE_TORCH_COMPILE:
|
110 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
111 |
-
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
|
112 |
print("Model Compiled!")
|
113 |
|
114 |
def save_image(img):
|
@@ -159,7 +138,7 @@ def generate(
|
|
159 |
"output_type": "pil",
|
160 |
}
|
161 |
|
162 |
-
images = pipe(**options).images
|
163 |
|
164 |
image_paths = [save_image(img) for img in images]
|
165 |
return image_paths, seed
|
@@ -297,4 +276,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
297 |
)
|
298 |
|
299 |
if __name__ == "__main__":
|
300 |
-
demo.queue(max_size=
|
|
|
13 |
from diffusers import DiffusionPipeline
|
14 |
from typing import Tuple
|
15 |
|
16 |
+
# Check for the Model Base..//
|
17 |
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
|
18 |
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
|
19 |
default_negative = os.getenv("default_negative","")
|
|
|
26 |
if i in negative:
|
27 |
return True
|
28 |
return False
|
29 |
+
# End of the - Prompt Con
|
|
|
30 |
|
31 |
style_list = [
|
|
|
32 |
{
|
33 |
"name": "3840 x 2160",
|
34 |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
|
|
56 |
negative = ""
|
57 |
return p.replace("{prompt}", positive), n + negative
|
58 |
|
|
|
|
|
|
|
|
|
59 |
DESCRIPTION = """## MidJourney 3D
|
|
|
60 |
"""
|
61 |
|
|
|
|
|
|
|
|
|
62 |
if not torch.cuda.is_available():
|
63 |
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
|
64 |
|
|
|
74 |
|
75 |
if torch.cuda.is_available():
|
76 |
pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
"Yntec/3Danimation",
|
78 |
torch_dtype=torch.float16,
|
79 |
use_safetensors=True,
|
|
|
82 |
)
|
83 |
if ENABLE_CPU_OFFLOAD:
|
84 |
pipe.enable_model_cpu_offload()
|
|
|
85 |
else:
|
86 |
pipe.to(device)
|
|
|
87 |
print("Loaded on Device!")
|
88 |
|
89 |
if USE_TORCH_COMPILE:
|
90 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
91 |
print("Model Compiled!")
|
92 |
|
93 |
def save_image(img):
|
|
|
138 |
"output_type": "pil",
|
139 |
}
|
140 |
|
141 |
+
images = pipe(**options).images
|
142 |
|
143 |
image_paths = [save_image(img) for img in images]
|
144 |
return image_paths, seed
|
|
|
276 |
)
|
277 |
|
278 |
if __name__ == "__main__":
|
279 |
+
demo.queue(max_size=50).launch()
|