File size: 18,453 Bytes
49e32ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# ---
# jupyter:
#   jupytext:
#     formats: ipynb,py:light
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.14.6
#   kernelspec:
#     display_name: Python 3 (ipykernel)
#     language: python
#     name: python3
# ---

# +
import os
import datetime
from typing import Dict, List, Tuple
from itertools import compress
import pandas as pd

from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.prompts import PromptTemplate
from langchain.retrievers import TFIDFRetriever, SVMRetriever
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline

from pydantic import BaseModel

import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

import torch
#from transformers import pipeline
from optimum.pipelines import pipeline
from transformers import AutoTokenizer, TextStreamer, AutoModelForSeq2SeqLM, TextIteratorStreamer
from threading import Thread

import gradio as gr


# -

# # Pre-load stopwords, vectorstore, models

# +
def get_faiss_store(faiss_vstore_folder,embeddings):
    import zipfile
    with zipfile.ZipFile(faiss_vstore_folder + '/faiss_lambeth_census_embedding.zip', 'r') as zip_ref:
        zip_ref.extractall(faiss_vstore_folder)

    faiss_vstore = FAISS.load_local(folder_path=faiss_vstore_folder, embeddings=embeddings)
    os.remove(faiss_vstore_folder + "/index.faiss")
    os.remove(faiss_vstore_folder + "/index.pkl")
    
    return faiss_vstore

#def set_hf_api_key(api_key, chain_agent):
    #if api_key:
       #os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
        #vectorstore = get_faiss_store(faiss_vstore_folder="faiss_lambeth_census_embedding.zip",embeddings=embeddings)
        #qa_chain = create_prompt_templates(vectorstore)
        #print(qa_chain)
        #os.environ["HUGGINGFACEHUB_API_TOKEN"] = ""
        #return qa_chain


# -

def create_hf_model(model_name = "declare-lab/flan-alpaca-large"):

    model_id = model_name
    torch_device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Running on device:", torch_device)
    print("CPU threads:", torch.get_num_threads())
    


    if torch_device == "cuda":
        model = AutoModelForSeq2SeqLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
    else:
        #torch.set_num_threads(8)
        model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    
    return model, tokenizer, torch_device

# +
# Add some stopwords to nltk default

nltk.download('stopwords')
stopwords = nltk.corpus.stopwords.words('english')
#print(stopwords.words('english'))
newStopWords = ['what','how', 'when', 'which', 'who', 'change', 'changed', 'do', 'did', 'increase', 'decrease', 'increased',
                'decreased', 'proportion', 'percentage', 'report', 'reporting','say', 'said']
stopwords.extend(newStopWords)
# -

# Embeddings
#model_name = "sentence-transformers/all-MiniLM-L6-v2"
#embeddings = HuggingFaceEmbeddings(model_name=model_name)
embed_model_name = "hkunlp/instructor-large"
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model_name)
vectorstore = get_faiss_store(faiss_vstore_folder="faiss_lambeth_census_embedding",embeddings=embeddings)

# +
# Models

#checkpoint = 'declare-lab/flan-alpaca-base' # Flan Alpaca Base incorrectly interprets text based on input (e.g. if you use words like increase or decrease in the question it will respond falsely often). Flan Alpaca Large is much more consistent
checkpoint = 'declare-lab/flan-alpaca-large'

model, tokenizer, torch_device = create_hf_model(model_name = checkpoint)


# Look at this for streaming text with huggingface and langchain (last example): https://github.com/hwchase17/langchain/issues/2918

streamer = TextStreamer(tokenizer, skip_prompt=True)

pipe = pipeline('text2text-generation', 
                 model = checkpoint,
#                tokenizer = tokenizer,
                 max_length=512, 
                 #do_sample=True,
                 temperature=0.000001,
                 #top_p=0.95,
                 #repetition_penalty=1.15,
                 accelerator="bettertransformer",
                 streamer=streamer
                )

checkpoint_keywords = 'ml6team/keyphrase-generation-t5-small-inspec'

keyword_model = pipeline('text2text-generation', 
                 model = checkpoint_keywords,
                 accelerator="bettertransformer"
                )


# -

# # Chat history

def clear_chat(chat_history_state, sources, chat_message):
    chat_history_state = []
    sources = ''
    chat_message = ''
    return chat_history_state, sources, chat_message


def _get_chat_history(chat_history: List[Tuple[str, str]]): # Limit to last 3 interactions only
    max_chat_length = 3

    if len(chat_history) > max_chat_length:
        chat_history = chat_history[-max_chat_length:]
        
    print(chat_history)

    first_q = ""
    for human_s, ai_s in chat_history:
        first_q = human_s
        break

    conversation = ""
    for human_s, ai_s in chat_history:
        human = f"Human: " + human_s
        ai = f"Assistant: " + ai_s
        conversation += "\n" + "\n".join([human, ai])

    return conversation, first_q


def adapt_q_from_chat_history(keyword_model, new_question_keywords, question, chat_history):
        t5_small_keyphrase = HuggingFacePipeline(pipeline=keyword_model)
        memory_llm = t5_small_keyphrase#flan_alpaca#flan_t5_xxl
        new_q_memory_llm = t5_small_keyphrase#flan_alpaca#flan_t5_xxl
    

        memory_prompt = PromptTemplate(
            template = "{chat_history_first_q}",
            input_variables=["chat_history_first_q"]
        )
            #template = "Extract the names of people, things, or places from the following text: {chat_history}",#\n    Original question: {question}\n  New list:",
            #template = "Extract keywords, and the names of people or places from the following text: {chat_history}",#\n    Original question: {question}\n  New list:",
            #\n    Original question: {question}\n  New list:",
        

            #example_prompt=_eg_prompt,
            #input_variables=["question", "chat_history"]
            #input_variables=["chat_history"]
        
        memory_extractor = LLMChain(llm=memory_llm, prompt=memory_prompt)
       
        #new_question_keywords = #remove_stopwords(question)

        print("new_question_keywords:")
        print(new_question_keywords)

        chat_history_str, chat_history_first_q = _get_chat_history(chat_history)
        if chat_history_str:
            
            extracted_memory = memory_extractor.run(
                chat_history_first_q=chat_history_first_q # question=question, chat_history=chat_history_str, 
            )
            
            new_question_kworded = extracted_memory + " " + new_question_keywords
            new_question = extracted_memory + " " + question
            
        else:
            new_question = question
            new_question_kworded = new_question_keywords
            
        return new_question, new_question_kworded


# # Prompt creation

def remove_q_stopwords(question):
    # Prepare question by removing keywords
    text = question.lower()
    text_tokens = word_tokenize(text)
    tokens_without_sw = [word for word in text_tokens if not word in stopwords]
    new_question_keywords = ' '.join(tokens_without_sw)
    return new_question_keywords, question


def create_final_prompt(inputs: Dict[str, str], vectorstore, instruction_prompt, content_prompt):
        
        question =  inputs["question"]
        chat_history = inputs["chat_history"]
        
        new_question_keywords, question = remove_q_stopwords(question)

        new_question, new_question_kworded = adapt_q_from_chat_history(keyword_model, new_question_keywords, question, chat_history)
        

        print("The question passed to the vector search is:")
        print(new_question_kworded)
        
        docs_keep_as_doc, docs_content, docs_url = find_relevant_passages(new_question_kworded, embeddings, k_val = 3, out_passages = 2, vec_score_cut_off = 1.3, vec_weight = 1, tfidf_weight = 0.5, svm_weight = 1)

        if docs_keep_as_doc == []:
            {"answer": "I'm sorry, I couldn't find a relevant answer to this question.", "sources":"I'm sorry, I couldn't find a relevant source for this question."}
        
        #new_inputs = inputs.copy()
        #new_inputs["question"] = new_question
        #new_inputs["chat_history"] = chat_history_str
        
        string_docs_content = '\n\n\n'.join(docs_content)
        
        #print("The draft instruction prompt is:")
        #print(instruction_prompt)
        
        instruction_prompt_out = instruction_prompt.format(question=new_question, summaries=string_docs_content)
        #print("The final instruction prompt:")
        #print(instruction_prompt_out)
        
                
        return instruction_prompt_out, string_docs_content


# +
def create_prompt_templates():    
  
    #EXAMPLE_PROMPT = PromptTemplate(
    #    template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n",
    #    input_variables=["page_content", "source"],
    #)

    CONTENT_PROMPT = PromptTemplate(
        template="{page_content}\n\n",#\n\nSOURCE: {source}\n\n",
        input_variables=["page_content"]
    )


# The main prompt:

    #main_prompt_template = """
    #Answer the question using the CONTENT below:  

    #CONTENT: {summaries}
    
    #QUESTION: {question}

    #ANSWER: """

    instruction_prompt_template = """
    {summaries}
    
    QUESTION: {question}
    
    Quote relevant text above."""

   
    INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template, input_variables=['question', 'summaries'])
    
    return INSTRUCTION_PROMPT, CONTENT_PROMPT


# -

def get_history_sources_final_input_prompt(user_input, history):
    
    #if chain_agent is None:
    #    history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)"))
    #    return history, history, "", ""
    print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
    print("User input: " + user_input)
    
    history = history or []
    

    
    # Create instruction prompt
    instruction_prompt, content_prompt = create_prompt_templates()
    instruction_prompt_out, string_docs_content =\
                create_final_prompt({"question": user_input, "chat_history": history}, vectorstore,
                                    instruction_prompt, content_prompt)
    
    sources_txt =  string_docs_content
    
    #print('sources_txt:')
    #print(sources_txt)
    
    history.append(user_input)
    
    print("Output history is:")
    print(history)

    print("The output prompt is:")
    print(instruction_prompt_out)
    
    return history, sources_txt, instruction_prompt_out


# # Chat functions

def produce_streaming_answer_chatbot(history, full_prompt): 
    
    print("The question is: ")
    print(full_prompt)
    
    # Get the model and tokenizer, and tokenize the user text.
    model_inputs = tokenizer(text=full_prompt, return_tensors="pt").to(torch_device)

    # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
    # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=512,
        do_sample=True,
        #top_p=top_p,
        temperature=float(0.00001)#,
        #top_k=top_k
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    # Pull the generated text from the streamer, and update the model output.
    
    history[-1][1] = ""
    for new_text in streamer:
        history[-1][1] += new_text
        yield history


def user(user_message, history):
        return gr.update(value="", interactive=False), history + [[user_message, None]]


def add_inputs_answer_to_history(user_message, history):
    #history.append((user_message, [-1]))
    
    print("History after appending is:")
    print(history)
    
    
    return history


# # Vector / hybrid search

def find_relevant_passages(new_question_kworded, embeddings, k_val, out_passages, vec_score_cut_off, vec_weight, tfidf_weight, svm_weight, vectorstore=vectorstore):

            docs = vectorstore.similarity_search_with_score(new_question_kworded, k=k_val)
            #docs = self.vstore.similarity_search_with_score(new_question_kworded, k=k_val)

            # Keep only documents with a certain score
            #docs_orig = [x[0] for x in docs]
            docs_scores = [x[1] for x in docs]

            # Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
            score_more_limit = pd.Series(docs_scores) < vec_score_cut_off
            docs_keep = list(compress(docs, score_more_limit))

            if docs_keep == []:
                docs_keep_as_doc = []
                docs_content = []
                docs_url = []
                return docs_keep_as_doc, docs_content, docs_url
            
            

            docs_keep_as_doc = [x[0] for x in docs_keep]
            docs_keep_length = len(docs_keep_as_doc)

            #print('docs_keep:')
            #print(docs_keep)

            vec_rank = [*range(1, docs_keep_length+1)]
            vec_score = [(docs_keep_length/x)*vec_weight for x in vec_rank]

            #print("vec_rank")
            #print(vec_rank)

            #print("vec_score")
            #print(vec_score)

        

            # 2nd level check on retrieved docs with TFIDF
            content_keep=[]
            for item in docs_keep:
                content_keep.append(item[0].page_content)

            tfidf_retriever = TFIDFRetriever.from_texts(content_keep, k = k_val)
            tfidf_result = tfidf_retriever.get_relevant_documents(new_question_kworded)

            #print("TDIDF retriever result:")
            #print(tfidf_result)

            tfidf_rank=[]
            tfidf_score = []

            for vec_item in docs_keep:
                x = 0
                for tfidf_item in tfidf_result:
                    x = x + 1
                    if tfidf_item.page_content == vec_item[0].page_content:
                        tfidf_rank.append(x)
                        tfidf_score.append((docs_keep_length/x)*tfidf_weight)

            #print("tfidf_rank:")
            #print(tfidf_rank)
            #print("tfidf_score:")
            #print(tfidf_score)


            # 3rd level check on retrieved docs with SVM retriever
            svm_retriever = SVMRetriever.from_texts(content_keep, embeddings, k = k_val)
            svm_result = svm_retriever.get_relevant_documents(new_question_kworded)

            #print("SVM retriever result:")
            #print(svm_result)
         
            svm_rank=[]
            svm_score = []

            for vec_item in docs_keep:
                x = 0
                for svm_item in svm_result:
                    x = x + 1
                    if svm_item.page_content == vec_item[0].page_content:
                        svm_rank.append(x)
                        svm_score.append((docs_keep_length/x)*svm_weight)

            #print("svm_score:")
            #print(svm_score)

        
            ## Calculate final score based on three ranking methods
            final_score = [a  + b + c for a, b, c in zip(vec_score, tfidf_score, svm_score)]
            final_rank = [sorted(final_score, reverse=True).index(x)+1 for x in final_score]

            #print("Final score:")
            #print(final_score)
            #print("final rank:")
            #print(final_rank)

            best_rank_index_pos = []

            for x in range(1,out_passages+1):
                try:
                    best_rank_index_pos.append(final_rank.index(x))
                except IndexError: # catch the error
                    pass

            # Adjust best_rank_index_pos to 
        
            #print("Best rank positions in original vector search list:")
            #print(best_rank_index_pos)

            best_rank_pos_series = pd.Series(best_rank_index_pos)
            #docs_keep_out = list(compress(docs_keep, best_rank_pos_series))

            #print("docs_keep:")
            #print(docs_keep)

            docs_keep_out = [docs_keep[i] for i in best_rank_index_pos]
        

            #docs_keep = [(docs_keep[best_rank_pos])]
            # Keep only 'best' options
            docs_keep_as_doc = [x[0] for x in docs_keep_out]# [docs_keep_as_doc_filt[0]]#[x[0] for x in docs_keep_as_doc_filt] #docs_keep_as_doc_filt[0]#
        
            #print("docs_keep_out:")
            #print(docs_keep_out)

            # Extract content and metadata from 'winning' passages.

            content=[]
            meta_url=[]
            score=[]

            for item in docs_keep_out:
                content.append(item[0].page_content)
                meta_url.append(item[0].metadata['source'])
                score.append(item[1])       

            # Create df from 'winning' passages

            doc_df = pd.DataFrame(list(zip(content, meta_url, score)),
               columns =['page_content', 'meta_url', 'score'])#.iloc[[0, 1]]
        
            #print("docs_keep_as_doc: ")
            #print(docs_keep_as_doc)

            #print("doc_df")
            #print(doc_df)

            docs_content = doc_df['page_content'].astype(str)
            docs_url = "https://" + doc_df['meta_url']
        
            #print("Docs meta url is: ")
            #print(docs_meta_url)

            #print("Docs content is: ")
            #print(docs_content)

            #docs_url = [d['source'] for d in docs_meta]
            #print(docs_url)
            
            

            return docs_keep_as_doc, docs_content, docs_url