File size: 855 Bytes
8ab1f6b
eba302d
 
8ab1f6b
eba302d
 
 
8ab1f6b
 
706f9db
8ab1f6b
706f9db
 
 
eba302d
 
8ab1f6b
 
 
eba302d
 
 
8ab1f6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from fastai.text.all import *
import gradio as gr

# Cargamos el learner
repo_id = "ikerml/twitter_class"

learner = from_pretrained_fastai(repo_id)

# Definimos las etiquetas de nuestro modelo
labels = ['❀','😍','πŸ˜‚','πŸ’•','πŸ”₯','😊','😎','✨','πŸ’™','😘','πŸ“·','πŸ‡ΊπŸ‡Έ','β˜€','πŸ’œ','πŸ˜‰','πŸ’―','😁','πŸŽ„','πŸ“Έ','😜']

example1 = "I like potatoe"
example2 = "My house is on fire"
example3 = "The other day, i eat a banana"

# Definimos una funciΓ³n que se encarga de llevar a cabo las predicciones
def predict(text):
    pred= learner.predict(text)[0]
    probs = pred['probs']
    return {labels[i]: float(probs[i]) for i in range(len(labels))}
    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=predict, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Label(),examples=[example1,example2,example3]).launch(share=False)