Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,131 +1,150 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
from
|
|
|
|
|
|
|
|
|
6 |
from transformers import pipeline
|
|
|
7 |
from fastapi.responses import RedirectResponse
|
8 |
-
import
|
9 |
-
import
|
10 |
-
from PIL import Image
|
11 |
-
import re
|
12 |
-
|
13 |
-
# β
Load AI models
|
14 |
-
print("π Initializing application...")
|
15 |
-
table_analyzer = pipeline("table-question-answering", model="google/tapas-base-finetuned-wtq", device=-1)
|
16 |
-
code_generator = pipeline("text-generation", model="EleutherAI/gpt-neo-125M", device=-1)
|
17 |
-
print("β
AI models loaded successfully!")
|
18 |
|
19 |
-
#
|
20 |
app = FastAPI()
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
# Convert date columns
|
30 |
-
for col in df.select_dtypes(include=["object", "datetime64"]):
|
31 |
-
try:
|
32 |
-
df[col] = pd.to_datetime(df[col], errors='coerce').dt.strftime('%Y-%m-%d %H:%M:%S')
|
33 |
-
except Exception:
|
34 |
-
pass
|
35 |
-
|
36 |
-
df = df.fillna(0) # Fill NaN values
|
37 |
-
|
38 |
-
formatted_table = [{col: str(value) for col, value in row.items()} for row in df.to_dict(orient="records")]
|
39 |
-
print(f"π Formatted table: {formatted_table[:5]}")
|
40 |
-
print(f"π User request: {user_request}")
|
41 |
-
|
42 |
-
if not isinstance(user_request, str):
|
43 |
-
raise ValueError("User request must be a string")
|
44 |
-
|
45 |
-
print("π§ Sending data to TAPAS model for analysis...")
|
46 |
-
table_answer = table_analyzer({"table": formatted_table, "query": user_request})
|
47 |
-
print("β
Table analysis completed!")
|
48 |
-
|
49 |
-
# β
AI-generated code
|
50 |
-
prompt = f"""
|
51 |
-
Generate a **valid** Python Matplotlib script using the DataFrame `df` to visualize:
|
52 |
-
- Columns: {list(df.columns)}
|
53 |
-
- Visualization type: {viz_type}
|
54 |
-
- User request: {user_request}
|
55 |
-
|
56 |
-
Requirements:
|
57 |
-
- Use `df` directly without reloading it.
|
58 |
-
- Always include `plt.show()` at the end.
|
59 |
-
- Ensure proper syntax (no missing imports or undefined variables).
|
60 |
-
- Generate **only** the code (no extra text).
|
61 |
-
"""
|
62 |
-
|
63 |
-
|
64 |
-
print("π€ Sending request to AI code generator...")
|
65 |
-
generated_code = code_generator(prompt, max_length=200)[0]['generated_text']
|
66 |
-
print("π AI-generated code:")
|
67 |
-
print(generated_code)
|
68 |
-
|
69 |
-
# β
Validate generated code
|
70 |
-
valid_syntax = re.match(r".*plt\.show\(\).*", generated_code, re.DOTALL)
|
71 |
-
if not valid_syntax:
|
72 |
-
print("β οΈ AI code generation failed! Using fallback visualization...")
|
73 |
-
return generated_code, "Error: The AI did not generate a valid Matplotlib script."
|
74 |
-
|
75 |
-
try:
|
76 |
-
ast.parse(generated_code) # Syntax validation
|
77 |
-
except SyntaxError as e:
|
78 |
-
return generated_code, f"Syntax error: {e}"
|
79 |
-
|
80 |
-
# β
Execute AI-generated code
|
81 |
-
try:
|
82 |
-
print("β‘ Executing AI-generated code...")
|
83 |
-
exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df.copy(), "io": io}
|
84 |
-
exec(generated_code, exec_globals)
|
85 |
-
|
86 |
-
fig = plt.gcf()
|
87 |
-
img_buf = io.BytesIO()
|
88 |
-
fig.savefig(img_buf, format='png')
|
89 |
-
img_buf.seek(0)
|
90 |
-
plt.close(fig)
|
91 |
-
except Exception as e:
|
92 |
-
print(f"β Error executing AI-generated code: {str(e)}")
|
93 |
-
return generated_code, f"Error executing visualization: {str(e)}"
|
94 |
-
|
95 |
-
img = Image.open(img_buf)
|
96 |
-
return generated_code, img
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
except Exception as e:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
)
|
121 |
-
print("β
Gradio interface configured successfully!")
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
app = gr.mount_gradio_app(app,
|
126 |
-
print("β
Gradio interface mounted successfully!")
|
127 |
|
128 |
@app.get("/")
|
129 |
def home():
|
130 |
-
|
131 |
-
return RedirectResponse(url="/")
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
import fitz # PyMuPDF for PDF parsing
|
3 |
+
from tika import parser # Apache Tika for document parsing
|
4 |
+
import openpyxl
|
5 |
+
from pptx import Presentation
|
6 |
+
import torch
|
7 |
+
from torchvision import transforms
|
8 |
+
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
9 |
+
from PIL import Image
|
10 |
from transformers import pipeline
|
11 |
+
import gradio as gr
|
12 |
from fastapi.responses import RedirectResponse
|
13 |
+
import numpy as np
|
14 |
+
import easyocr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Initialize FastAPI
|
17 |
app = FastAPI()
|
18 |
|
19 |
+
# Load AI Model for Question Answering (DeepSeek-V2-Chat)
|
20 |
+
qa_pipeline = pipeline("text-generation", model="deepseek-ai/DeepSeek-V2-Chat")
|
21 |
+
|
22 |
+
# Load Pretrained Object Detection Model (if needed)
|
23 |
+
model = fasterrcnn_resnet50_fpn(pretrained=True)
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
# Initialize OCR Model (Lazy Load)
|
27 |
+
reader = easyocr.Reader(["en"], gpu=True)
|
28 |
+
|
29 |
+
# Image Transformations
|
30 |
+
transform = transforms.Compose([
|
31 |
+
transforms.ToTensor()
|
32 |
+
])
|
33 |
+
|
34 |
+
# Allowed File Extensions
|
35 |
+
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
36 |
+
|
37 |
+
def validate_file_type(file):
|
38 |
+
ext = file.name.split(".")[-1].lower()
|
39 |
+
if ext not in ALLOWED_EXTENSIONS:
|
40 |
+
return f"Unsupported file format: {ext}"
|
41 |
+
return None
|
42 |
+
|
43 |
+
# Function to truncate text to 450 tokens
|
44 |
+
def truncate_text(text, max_tokens=450):
|
45 |
+
words = text.split()
|
46 |
+
return " ".join(words[:max_tokens])
|
47 |
+
|
48 |
+
# Document Text Extraction Functions
|
49 |
+
def extract_text_from_pdf(pdf_file):
|
50 |
+
try:
|
51 |
+
doc = fitz.open(pdf_file)
|
52 |
+
text = "\n".join([page.get_text("text") for page in doc])
|
53 |
+
return text if text else "No text found."
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error reading PDF: {str(e)}"
|
56 |
+
|
57 |
+
def extract_text_with_tika(file):
|
58 |
try:
|
59 |
+
parsed = parser.from_buffer(file)
|
60 |
+
return parsed.get("content", "No text found.").strip()
|
61 |
+
except Exception as e:
|
62 |
+
return f"Error reading document: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def extract_text_from_pptx(pptx_file):
|
65 |
+
try:
|
66 |
+
ppt = Presentation(pptx_file)
|
67 |
+
text = []
|
68 |
+
for slide in ppt.slides:
|
69 |
+
for shape in slide.shapes:
|
70 |
+
if hasattr(shape, "text"):
|
71 |
+
text.append(shape.text)
|
72 |
+
return "\n".join(text) if text else "No text found."
|
73 |
except Exception as e:
|
74 |
+
return f"Error reading PPTX: {str(e)}"
|
75 |
+
|
76 |
+
def extract_text_from_excel(excel_file):
|
77 |
+
try:
|
78 |
+
wb = openpyxl.load_workbook(excel_file, read_only=True)
|
79 |
+
text = []
|
80 |
+
for sheet in wb.worksheets:
|
81 |
+
for row in sheet.iter_rows(values_only=True):
|
82 |
+
text.append(" ".join(map(str, row)))
|
83 |
+
return "\n".join(text) if text else "No text found."
|
84 |
+
except Exception as e:
|
85 |
+
return f"Error reading Excel: {str(e)}"
|
86 |
+
|
87 |
+
def extract_text_from_image(image_file):
|
88 |
+
image = Image.open(image_file).convert("RGB")
|
89 |
+
if np.array(image).std() < 10: # Low contrast = likely empty
|
90 |
+
return "No meaningful content detected in the image."
|
91 |
+
|
92 |
+
result = reader.readtext(np.array(image))
|
93 |
+
return " ".join([res[1] for res in result]) if result else "No text found."
|
94 |
+
|
95 |
+
# Function to answer questions based on document content
|
96 |
+
def answer_question_from_document(file, question):
|
97 |
+
validation_error = validate_file_type(file)
|
98 |
+
if validation_error:
|
99 |
+
return validation_error
|
100 |
+
|
101 |
+
file_ext = file.name.split(".")[-1].lower()
|
102 |
+
if file_ext == "pdf":
|
103 |
+
text = extract_text_from_pdf(file)
|
104 |
+
elif file_ext in ["docx", "pptx"]:
|
105 |
+
text = extract_text_with_tika(file)
|
106 |
+
elif file_ext == "xlsx":
|
107 |
+
text = extract_text_from_excel(file)
|
108 |
+
else:
|
109 |
+
return "Unsupported file format!"
|
110 |
+
|
111 |
+
if not text:
|
112 |
+
return "No text extracted from the document."
|
113 |
+
|
114 |
+
truncated_text = truncate_text(text)
|
115 |
+
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
|
116 |
+
|
117 |
+
return response[0]["generated_text"]
|
118 |
+
|
119 |
+
def answer_question_from_image(image, question):
|
120 |
+
image_text = extract_text_from_image(image)
|
121 |
+
if not image_text:
|
122 |
+
return "No meaningful content detected in the image."
|
123 |
+
|
124 |
+
truncated_text = truncate_text(image_text)
|
125 |
+
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
|
126 |
+
|
127 |
+
return response[0]["generated_text"]
|
128 |
+
|
129 |
+
# Gradio UI for Document & Image QA
|
130 |
+
doc_interface = gr.Interface(
|
131 |
+
fn=answer_question_from_document,
|
132 |
+
inputs=[gr.File(label="Upload Document"), gr.Textbox(label="Ask a Question")],
|
133 |
+
outputs="text",
|
134 |
+
title="AI Document Question Answering"
|
135 |
+
)
|
136 |
+
|
137 |
+
img_interface = gr.Interface(
|
138 |
+
fn=answer_question_from_image,
|
139 |
+
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
|
140 |
+
outputs="text",
|
141 |
+
title="AI Image Question Answering"
|
142 |
)
|
|
|
143 |
|
144 |
+
# Mount Gradio Interfaces
|
145 |
+
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])
|
146 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
|
|
147 |
|
148 |
@app.get("/")
|
149 |
def home():
|
150 |
+
return RedirectResponse(url="/")
|
|