Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,141 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
from
|
3 |
-
import
|
4 |
-
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
5 |
import pdfplumber
|
6 |
import docx
|
7 |
import openpyxl
|
8 |
import pytesseract
|
9 |
-
from
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
-
# Initialize
|
13 |
app = FastAPI()
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
image_qa_model_name = "Salesforce/blip-vqa-base"
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
# Helper function to process DOCX files
|
33 |
-
def extract_text_from_docx(file_path):
|
34 |
-
doc = docx.Document(file_path)
|
35 |
-
text = "\n".join([para.text for para in doc.paragraphs])
|
36 |
-
return text
|
37 |
-
|
38 |
-
# Helper function to process Excel files
|
39 |
-
def extract_text_from_excel(file_path):
|
40 |
-
wb = openpyxl.load_workbook(file_path)
|
41 |
-
sheet = wb.active
|
42 |
-
text = ""
|
43 |
-
for row in sheet.iter_rows():
|
44 |
-
text += " ".join([str(cell.value) for cell in row]) + "\n"
|
45 |
-
return text
|
46 |
-
|
47 |
-
# Helper function to process PDF files
|
48 |
-
def extract_text_from_pdf(file_path):
|
49 |
with pdfplumber.open(file_path) as pdf:
|
50 |
text = ""
|
51 |
for page in pdf.pages:
|
52 |
text += page.extract_text()
|
53 |
return text
|
54 |
|
55 |
-
#
|
56 |
-
def
|
57 |
-
|
58 |
-
text =
|
|
|
|
|
59 |
return text
|
60 |
|
61 |
-
#
|
62 |
-
def
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
|
70 |
-
#
|
71 |
-
def
|
72 |
-
|
73 |
-
|
74 |
-
# Combine caption with the question to form input to the QA model
|
75 |
-
return caption # For simplicity, you may further process this if needed
|
76 |
|
77 |
-
#
|
78 |
-
@app.
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
f.write(await file.read())
|
83 |
|
84 |
-
# Extract text
|
85 |
-
if file.filename.endswith(
|
86 |
-
|
87 |
-
elif file.filename.endswith(
|
88 |
-
|
89 |
-
elif file.filename.endswith(
|
90 |
-
|
91 |
else:
|
92 |
-
return {"error": "Unsupported file format
|
93 |
|
94 |
-
#
|
95 |
-
|
96 |
-
return {"answer": answer}
|
97 |
|
98 |
-
#
|
99 |
-
@app.post("/
|
100 |
-
async def
|
101 |
-
|
102 |
-
|
103 |
-
f.write(await file.read())
|
104 |
|
105 |
-
#
|
106 |
-
image_text = extract_text_from_image(
|
107 |
-
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
# Gradio Interface for Document QA
|
113 |
-
def document_qa_interface(file, question):
|
114 |
-
file_path = file.name
|
115 |
-
if file_path.endswith(".pdf"):
|
116 |
-
document_text = extract_text_from_pdf(file_path)
|
117 |
-
elif file_path.endswith(".docx"):
|
118 |
-
document_text = extract_text_from_docx(file_path)
|
119 |
-
elif file_path.endswith(".xlsx"):
|
120 |
-
document_text = extract_text_from_excel(file_path)
|
121 |
-
else:
|
122 |
-
return "Unsupported document format."
|
123 |
-
|
124 |
-
return document_question_answering(document_text, question)
|
125 |
-
|
126 |
-
# Gradio Interface for Image QA
|
127 |
-
def image_qa_interface(image, question):
|
128 |
-
return image_question_answering(image, question)
|
129 |
-
|
130 |
-
# Gradio Web Interface
|
131 |
-
iface_document = gr.Interface(fn=document_qa_interface, inputs=["file", "text"], outputs="text")
|
132 |
-
iface_image = gr.Interface(fn=image_qa_interface, inputs=["image", "text"], outputs="text")
|
133 |
|
134 |
-
#
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
|
139 |
-
# Launch Gradio Interface
|
140 |
-
iface_document.launch(share=True)
|
141 |
-
iface_image.launch(share=True)
|
|
|
1 |
+
from fastapi import FastAPI, Form, File, UploadFile
|
2 |
+
from fastapi.responses import RedirectResponse
|
3 |
+
from fastapi.staticfiles import StaticFiles
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from transformers import pipeline
|
6 |
import os
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
|
|
9 |
import pdfplumber
|
10 |
import docx
|
11 |
import openpyxl
|
12 |
import pytesseract
|
13 |
+
from io import BytesIO
|
14 |
+
import fitz # PyMuPDF
|
15 |
+
import easyocr
|
16 |
+
from fastapi.templating import Jinja2Templates
|
17 |
+
from starlette.requests import Request
|
18 |
|
19 |
+
# Initialize the app
|
20 |
app = FastAPI()
|
21 |
|
22 |
+
# Mount the static directory to serve HTML, CSS, JS files
|
23 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
|
24 |
|
25 |
+
# Initialize transformers pipelines
|
26 |
+
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
|
27 |
+
image_qa_pipeline = pipeline("image-question-answering", model="Salesforce/blip-vqa-base", tokenizer="Salesforce/blip-vqa-base")
|
28 |
|
29 |
+
# Initialize EasyOCR for image-based text extraction
|
30 |
+
reader = easyocr.Reader(['en'])
|
31 |
|
32 |
+
# Define a template for rendering HTML
|
33 |
+
templates = Jinja2Templates(directory="templates")
|
34 |
|
35 |
+
# Function to process PDFs
|
36 |
+
def extract_pdf_text(file_path: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
with pdfplumber.open(file_path) as pdf:
|
38 |
text = ""
|
39 |
for page in pdf.pages:
|
40 |
text += page.extract_text()
|
41 |
return text
|
42 |
|
43 |
+
# Function to process DOCX files
|
44 |
+
def extract_docx_text(file_path: str):
|
45 |
+
doc = docx.Document(file_path)
|
46 |
+
text = ""
|
47 |
+
for para in doc.paragraphs:
|
48 |
+
text += para.text
|
49 |
return text
|
50 |
|
51 |
+
# Function to process PPTX files
|
52 |
+
def extract_pptx_text(file_path: str):
|
53 |
+
from pptx import Presentation
|
54 |
+
prs = Presentation(file_path)
|
55 |
+
text = ""
|
56 |
+
for slide in prs.slides:
|
57 |
+
for shape in slide.shapes:
|
58 |
+
if hasattr(shape, "text"):
|
59 |
+
text += shape.text
|
60 |
+
return text
|
61 |
|
62 |
+
# Function to extract text from images using OCR
|
63 |
+
def extract_text_from_image(image: Image):
|
64 |
+
text = pytesseract.image_to_string(image)
|
65 |
+
return text
|
|
|
|
|
66 |
|
67 |
+
# Home route
|
68 |
+
@app.get("/")
|
69 |
+
def home():
|
70 |
+
return RedirectResponse(url="/docs")
|
71 |
+
|
72 |
+
# Function to answer questions based on document content
|
73 |
+
@app.post("/question-answering-doc")
|
74 |
+
async def question_answering_doc(question: str = Form(...), file: UploadFile = File(...)):
|
75 |
+
# Save the uploaded file temporarily
|
76 |
+
file_path = f"temp_files/{file.filename}"
|
77 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
78 |
+
with open(file_path, "wb") as f:
|
79 |
f.write(await file.read())
|
80 |
|
81 |
+
# Extract text based on file type
|
82 |
+
if file.filename.endswith(".pdf"):
|
83 |
+
text = extract_pdf_text(file_path)
|
84 |
+
elif file.filename.endswith(".docx"):
|
85 |
+
text = extract_docx_text(file_path)
|
86 |
+
elif file.filename.endswith(".pptx"):
|
87 |
+
text = extract_pptx_text(file_path)
|
88 |
else:
|
89 |
+
return {"error": "Unsupported file format"}
|
90 |
|
91 |
+
# Use the model for question answering
|
92 |
+
qa_result = qa_pipeline(question=question, context=text)
|
93 |
+
return {"answer": qa_result['answer']}
|
94 |
|
95 |
+
# Function to answer questions based on images
|
96 |
+
@app.post("/question-answering-image")
|
97 |
+
async def question_answering_image(question: str = Form(...), image_file: UploadFile = File(...)):
|
98 |
+
# Open the uploaded image
|
99 |
+
image = Image.open(BytesIO(await image_file.read()))
|
|
|
100 |
|
101 |
+
# Use EasyOCR to extract text if the image has textual content
|
102 |
+
image_text = extract_text_from_image(image)
|
103 |
+
|
104 |
+
# Use the BLIP VQA model for question answering on the image
|
105 |
+
image_qa_result = image_qa_pipeline(image=image, question=question)
|
106 |
+
|
107 |
+
return {"answer": image_qa_result['answer'], "image_text": image_text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# Serve the application in Hugging Face space
|
110 |
+
@app.get("/docs")
|
111 |
+
async def get_docs(request: Request):
|
112 |
+
return templates.TemplateResponse("index.html", {"request": request})
|
113 |
|
|
|
|
|
|