Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from PIL import Image
|
|
10 |
from transformers import pipeline
|
11 |
import gradio as gr
|
12 |
from fastapi.responses import RedirectResponse
|
13 |
-
|
14 |
# Initialize FastAPI
|
15 |
app = FastAPI()
|
16 |
|
@@ -62,14 +62,19 @@ def extract_text_from_excel(excel_file):
|
|
62 |
|
63 |
# Function to perform object detection using Torchvision
|
64 |
def extract_text_from_image(image_file):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
reader = easyocr.Reader(["en"])
|
71 |
-
result = reader.readtext(np.array(image)) # Convert PIL image back to NumPy array
|
72 |
-
return " ".join([res[1] for res in result])
|
73 |
# Function to answer questions based on document content
|
74 |
def answer_question_from_document(file, question):
|
75 |
file_ext = file.name.split(".")[-1].lower()
|
|
|
10 |
from transformers import pipeline
|
11 |
import gradio as gr
|
12 |
from fastapi.responses import RedirectResponse
|
13 |
+
|
14 |
# Initialize FastAPI
|
15 |
app = FastAPI()
|
16 |
|
|
|
62 |
|
63 |
# Function to perform object detection using Torchvision
|
64 |
def extract_text_from_image(image_file):
|
65 |
+
image = Image.open(image_file).convert("RGB")
|
66 |
+
image_tensor = transform(image).unsqueeze(0)
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
predictions = model(image_tensor)
|
70 |
+
|
71 |
+
detected_objects = []
|
72 |
+
for label, score in zip(predictions[0]['labels'], predictions[0]['scores']):
|
73 |
+
if score > 0.7:
|
74 |
+
detected_objects.append(f"Object {label.item()} detected with confidence {score.item():.2f}")
|
75 |
+
|
76 |
+
return "\n".join(detected_objects) if detected_objects else "No objects detected."
|
77 |
|
|
|
|
|
|
|
78 |
# Function to answer questions based on document content
|
79 |
def answer_question_from_document(file, question):
|
80 |
file_ext = file.name.split(".")[-1].lower()
|