Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,64 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
import torch
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
code_generator = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")
|
11 |
-
user_input_processor = pipeline("text-generation", model="tiiuae/falcon-7b-instruct")
|
12 |
-
table_analyzer = pipeline("table-question-answering", model="google/tapas-large")
|
13 |
-
image_captioner = pipeline("image-to-text", model="Salesforce/blip2-opt-2.7b")
|
14 |
|
|
|
15 |
app = FastAPI()
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
#
|
37 |
-
exec_globals = {"
|
38 |
-
|
39 |
-
exec(python_code, exec_globals)
|
40 |
-
except Exception as e:
|
41 |
-
return None, f"Error in generated code: {str(e)}", table_answer
|
42 |
|
43 |
-
#
|
44 |
-
|
|
|
45 |
plt.close()
|
46 |
-
|
47 |
-
return "output.png", python_code, table_answer
|
48 |
except Exception as e:
|
49 |
-
return
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
fn=
|
54 |
-
inputs=[gr.File(label="Upload Excel File"), gr.Textbox(label="
|
55 |
-
outputs=
|
56 |
-
title="AI-Powered Data Visualization"
|
|
|
57 |
)
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
def home():
|
62 |
-
return {"message": "Welcome to AI-Powered Data Visualization"}
|
63 |
-
|
64 |
-
app = gr.mount_gradio_app(app, gradio_ui, path="/visualization")
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
69 |
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
+
import openai
|
6 |
+
import fastapi
|
7 |
+
from fastapi import FastAPI, UploadFile, File
|
8 |
+
import io
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Initialize FastAPI app
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Function to generate Python visualization code using Hugging Face model
|
14 |
+
def generate_viz_code(prompt: str) -> str:
|
15 |
+
"""Generate Python code for visualization based on user prompt."""
|
16 |
+
response = openai.ChatCompletion.create(
|
17 |
+
model="mistralai/Mistral-7B", # Replace with the actual Hugging Face model
|
18 |
+
messages=[
|
19 |
+
{"role": "system", "content": "You are an AI assistant for data visualization."},
|
20 |
+
{"role": "user", "content": prompt}
|
21 |
+
]
|
22 |
+
)
|
23 |
+
return response["choices"][0]["message"]["content"]
|
24 |
|
25 |
+
# Function to handle file upload and visualization
|
26 |
+
def visualize_data(file: UploadFile, prompt: str):
|
27 |
+
try:
|
28 |
+
# Read the uploaded Excel file
|
29 |
+
contents = file.file.read()
|
30 |
+
df = pd.read_excel(io.BytesIO(contents))
|
31 |
|
32 |
+
# Generate visualization code
|
33 |
+
code = generate_viz_code(prompt)
|
34 |
+
print("Generated Code:\n", code) # Debug output
|
35 |
|
36 |
+
# Execute the generated code
|
37 |
+
exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df}
|
38 |
+
exec(code, exec_globals)
|
|
|
|
|
|
|
39 |
|
40 |
+
# Save the generated plot
|
41 |
+
img_path = "visualization.png"
|
42 |
+
plt.savefig(img_path)
|
43 |
plt.close()
|
44 |
+
return img_path
|
|
|
45 |
except Exception as e:
|
46 |
+
return f"Error: {str(e)}"
|
47 |
|
48 |
+
# Define Gradio interface
|
49 |
+
gui = gr.Interface(
|
50 |
+
fn=visualize_data,
|
51 |
+
inputs=[gr.File(label="Upload Excel File"), gr.Textbox(label="Describe your visualization request")],
|
52 |
+
outputs=gr.Image(label="Generated Visualization"),
|
53 |
+
title="AI-Powered Data Visualization Generator",
|
54 |
+
description="Upload an Excel file and describe the visualization, and AI will generate it using Matplotlib/Seaborn."
|
55 |
)
|
56 |
|
57 |
+
# Integrate Gradio with FastAPI
|
58 |
+
app = gr.mount_gradio_app(app, gui, path="/")
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Uncomment below to run standalone FastAPI app
|
61 |
+
# if __name__ == "__main__":
|
62 |
+
# import uvicorn
|
63 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
64 |
|