ikraamkb commited on
Commit
6f132c3
Β·
verified Β·
1 Parent(s): 7080b35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -51
app.py CHANGED
@@ -1,69 +1,64 @@
1
  import gradio as gr
2
  import pandas as pd
3
- import torch
4
  import matplotlib.pyplot as plt
5
  import seaborn as sns
6
- from fastapi import FastAPI
7
- from transformers import pipeline
8
-
9
- # βœ… Load Hugging Face models dynamically
10
- code_generator = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")
11
- user_input_processor = pipeline("text-generation", model="tiiuae/falcon-7b-instruct")
12
- table_analyzer = pipeline("table-question-answering", model="google/tapas-large")
13
- image_captioner = pipeline("image-to-text", model="Salesforce/blip2-opt-2.7b")
14
 
 
15
  app = FastAPI()
16
 
17
- def generate_visualization(excel_file, user_request):
18
- try:
19
- # βœ… Load Excel file
20
- df = pd.read_excel(excel_file)
21
-
22
- # βœ… Convert DataFrame to JSON (for TAPAS model input)
23
- table_data = df.to_dict(orient="records")
24
-
25
- # βœ… Analyze table using TAPAS (Google's Table-based QA model)
26
- table_answer = table_analyzer(question=user_request, table=table_data)
 
27
 
28
- # βœ… Generate Python visualization code with StarCoder
29
- prompt = f"Generate Python code using Matplotlib and Seaborn to visualize: {user_request} from this data:\n{df.head()}"
30
- code_response = code_generator(prompt, max_new_tokens=200, do_sample=True)[0]["generated_text"]
 
 
 
31
 
32
- # βœ… Extract relevant Python code
33
- code_lines = code_response.split("\n")
34
- python_code = "\n".join([line for line in code_lines if "import" in line or "plt." in line or "sns." in line])
35
 
36
- # βœ… Execute generated code safely
37
- exec_globals = {"df": df, "plt": plt, "sns": sns}
38
- try:
39
- exec(python_code, exec_globals)
40
- except Exception as e:
41
- return None, f"Error in generated code: {str(e)}", table_answer
42
 
43
- # βœ… Save the visualization as an image
44
- plt.savefig("output.png")
 
45
  plt.close()
46
-
47
- return "output.png", python_code, table_answer
48
  except Exception as e:
49
- return None, None, f"Error: {str(e)}"
50
 
51
- # βœ… Gradio UI
52
- gradio_ui = gr.Interface(
53
- fn=generate_visualization,
54
- inputs=[gr.File(label="Upload Excel File"), gr.Textbox(label="Enter Visualization Request")],
55
- outputs=[gr.Image(label="Generated Visualization"), gr.Code(label="Generated Python Code"), gr.Textbox(label="Table Insights")],
56
- title="AI-Powered Data Visualization"
 
57
  )
58
 
59
- # βœ… Mount Gradio app to FastAPI
60
- @app.get("/")
61
- def home():
62
- return {"message": "Welcome to AI-Powered Data Visualization"}
63
-
64
- app = gr.mount_gradio_app(app, gradio_ui, path="/visualization")
65
 
66
- if __name__ == "__main__":
67
- import uvicorn
68
- uvicorn.run(app, host="0.0.0.0", port=7860)
 
69
 
 
1
  import gradio as gr
2
  import pandas as pd
 
3
  import matplotlib.pyplot as plt
4
  import seaborn as sns
5
+ import openai
6
+ import fastapi
7
+ from fastapi import FastAPI, UploadFile, File
8
+ import io
 
 
 
 
9
 
10
+ # Initialize FastAPI app
11
  app = FastAPI()
12
 
13
+ # Function to generate Python visualization code using Hugging Face model
14
+ def generate_viz_code(prompt: str) -> str:
15
+ """Generate Python code for visualization based on user prompt."""
16
+ response = openai.ChatCompletion.create(
17
+ model="mistralai/Mistral-7B", # Replace with the actual Hugging Face model
18
+ messages=[
19
+ {"role": "system", "content": "You are an AI assistant for data visualization."},
20
+ {"role": "user", "content": prompt}
21
+ ]
22
+ )
23
+ return response["choices"][0]["message"]["content"]
24
 
25
+ # Function to handle file upload and visualization
26
+ def visualize_data(file: UploadFile, prompt: str):
27
+ try:
28
+ # Read the uploaded Excel file
29
+ contents = file.file.read()
30
+ df = pd.read_excel(io.BytesIO(contents))
31
 
32
+ # Generate visualization code
33
+ code = generate_viz_code(prompt)
34
+ print("Generated Code:\n", code) # Debug output
35
 
36
+ # Execute the generated code
37
+ exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df}
38
+ exec(code, exec_globals)
 
 
 
39
 
40
+ # Save the generated plot
41
+ img_path = "visualization.png"
42
+ plt.savefig(img_path)
43
  plt.close()
44
+ return img_path
 
45
  except Exception as e:
46
+ return f"Error: {str(e)}"
47
 
48
+ # Define Gradio interface
49
+ gui = gr.Interface(
50
+ fn=visualize_data,
51
+ inputs=[gr.File(label="Upload Excel File"), gr.Textbox(label="Describe your visualization request")],
52
+ outputs=gr.Image(label="Generated Visualization"),
53
+ title="AI-Powered Data Visualization Generator",
54
+ description="Upload an Excel file and describe the visualization, and AI will generate it using Matplotlib/Seaborn."
55
  )
56
 
57
+ # Integrate Gradio with FastAPI
58
+ app = gr.mount_gradio_app(app, gui, path="/")
 
 
 
 
59
 
60
+ # Uncomment below to run standalone FastAPI app
61
+ # if __name__ == "__main__":
62
+ # import uvicorn
63
+ # uvicorn.run(app, host="0.0.0.0", port=8000)
64