Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -76,29 +76,76 @@ async def visualize(
|
|
76 |
|
77 |
|
78 |
return StreamingResponse(img_stream, media_type="image/png")'''
|
79 |
-
from fastapi import FastAPI
|
80 |
import gradio as gr
|
81 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
# FastAPI instance
|
84 |
app = FastAPI()
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
return f"Hello, {name}!"
|
94 |
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
|
|
103 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
104 |
|
|
|
|
76 |
|
77 |
|
78 |
return StreamingResponse(img_stream, media_type="image/png")'''
|
|
|
79 |
import gradio as gr
|
80 |
+
import pandas as pd
|
81 |
+
import matplotlib.pyplot as plt
|
82 |
+
import seaborn as sns
|
83 |
+
import openai
|
84 |
+
from fastapi import FastAPI
|
85 |
+
from gradio.routes import mount_gradio_app
|
86 |
+
from transformers import pipeline
|
87 |
+
|
88 |
+
# Load Hugging Face model for NLP interpretation
|
89 |
+
generator = pipeline("text2text-generation", model="HuggingFaceH4/t5-small")
|
90 |
|
|
|
91 |
app = FastAPI()
|
92 |
|
93 |
+
def generate_code(natural_language_request, df):
|
94 |
+
"""Convert NL request to Python visualization code using a Hugging Face model."""
|
95 |
+
prompt = f"Generate Python code to visualize data using matplotlib or seaborn: {natural_language_request}"
|
96 |
+
response = generator(prompt, max_length=100)[0]['generated_text']
|
97 |
+
|
98 |
+
# Ensure the generated code runs with df
|
99 |
+
code = f"""
|
100 |
+
import matplotlib.pyplot as plt
|
101 |
+
import seaborn as sns
|
102 |
|
103 |
+
df = {df.to_dict()} # Convert dataframe to dictionary for execution
|
104 |
+
{response}
|
|
|
105 |
|
106 |
+
plt.show()
|
107 |
+
"""
|
108 |
+
return code
|
109 |
|
110 |
+
def visualize(file, request):
|
111 |
+
"""Process the Excel file and generate a visualization based on the user's request."""
|
112 |
+
if not file:
|
113 |
+
return "Please upload an Excel file."
|
114 |
+
|
115 |
+
# Load the first sheet of the Excel file
|
116 |
+
df = pd.read_excel(file, sheet_name=0)
|
117 |
+
|
118 |
+
# Generate Python visualization code
|
119 |
+
code = generate_code(request, df)
|
120 |
+
|
121 |
+
# Execute the generated code safely
|
122 |
+
try:
|
123 |
+
exec_globals = {"df": df, "plt": plt, "sns": sns}
|
124 |
+
exec(code, exec_globals)
|
125 |
+
|
126 |
+
# Save plot to image file
|
127 |
+
plt.savefig("output.png")
|
128 |
+
return "output.png"
|
129 |
+
except Exception as e:
|
130 |
+
return f"Error executing code: {str(e)}"
|
131 |
+
|
132 |
+
# Gradio UI
|
133 |
+
gr_interface = gr.Interface(
|
134 |
+
fn=visualize,
|
135 |
+
inputs=[
|
136 |
+
gr.File(label="Upload Excel File"),
|
137 |
+
gr.Textbox(label="Describe your visualization (e.g., 'Show a histogram of column A')")
|
138 |
+
],
|
139 |
+
outputs=gr.Image(label="Generated Visualization"),
|
140 |
+
title="AI-Powered Data Visualization",
|
141 |
+
description="Upload an Excel file and describe your visualization in natural language."
|
142 |
+
)
|
143 |
+
|
144 |
+
# Mount Gradio app to FastAPI
|
145 |
+
app = mount_gradio_app(app, gr_interface, path="/")
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
+
import uvicorn
|
149 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
150 |
|
151 |
+
|