ikraamkb commited on
Commit
8653b6c
·
verified ·
1 Parent(s): bf0a429

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -15
app.py CHANGED
@@ -76,29 +76,76 @@ async def visualize(
76
 
77
 
78
  return StreamingResponse(img_stream, media_type="image/png")'''
79
- from fastapi import FastAPI
80
  import gradio as gr
81
- import uvicorn
 
 
 
 
 
 
 
 
 
82
 
83
- # FastAPI instance
84
  app = FastAPI()
85
 
86
- # Example FastAPI route
87
- @app.get("/")
88
- def read_root():
89
- return {"message": "Welcome to FastAPI & Gradio App!"}
 
 
 
 
 
90
 
91
- # Gradio Interface
92
- def greet(name):
93
- return f"Hello, {name}!"
94
 
95
- gradio_app = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
96
 
97
- # Mount Gradio inside FastAPI
98
- @app.get("/gradio")
99
- def gradio_ui():
100
- return gradio_app.launch(share=False, inline=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  if __name__ == "__main__":
 
103
  uvicorn.run(app, host="0.0.0.0", port=7860)
104
 
 
 
76
 
77
 
78
  return StreamingResponse(img_stream, media_type="image/png")'''
 
79
  import gradio as gr
80
+ import pandas as pd
81
+ import matplotlib.pyplot as plt
82
+ import seaborn as sns
83
+ import openai
84
+ from fastapi import FastAPI
85
+ from gradio.routes import mount_gradio_app
86
+ from transformers import pipeline
87
+
88
+ # Load Hugging Face model for NLP interpretation
89
+ generator = pipeline("text2text-generation", model="HuggingFaceH4/t5-small")
90
 
 
91
  app = FastAPI()
92
 
93
+ def generate_code(natural_language_request, df):
94
+ """Convert NL request to Python visualization code using a Hugging Face model."""
95
+ prompt = f"Generate Python code to visualize data using matplotlib or seaborn: {natural_language_request}"
96
+ response = generator(prompt, max_length=100)[0]['generated_text']
97
+
98
+ # Ensure the generated code runs with df
99
+ code = f"""
100
+ import matplotlib.pyplot as plt
101
+ import seaborn as sns
102
 
103
+ df = {df.to_dict()} # Convert dataframe to dictionary for execution
104
+ {response}
 
105
 
106
+ plt.show()
107
+ """
108
+ return code
109
 
110
+ def visualize(file, request):
111
+ """Process the Excel file and generate a visualization based on the user's request."""
112
+ if not file:
113
+ return "Please upload an Excel file."
114
+
115
+ # Load the first sheet of the Excel file
116
+ df = pd.read_excel(file, sheet_name=0)
117
+
118
+ # Generate Python visualization code
119
+ code = generate_code(request, df)
120
+
121
+ # Execute the generated code safely
122
+ try:
123
+ exec_globals = {"df": df, "plt": plt, "sns": sns}
124
+ exec(code, exec_globals)
125
+
126
+ # Save plot to image file
127
+ plt.savefig("output.png")
128
+ return "output.png"
129
+ except Exception as e:
130
+ return f"Error executing code: {str(e)}"
131
+
132
+ # Gradio UI
133
+ gr_interface = gr.Interface(
134
+ fn=visualize,
135
+ inputs=[
136
+ gr.File(label="Upload Excel File"),
137
+ gr.Textbox(label="Describe your visualization (e.g., 'Show a histogram of column A')")
138
+ ],
139
+ outputs=gr.Image(label="Generated Visualization"),
140
+ title="AI-Powered Data Visualization",
141
+ description="Upload an Excel file and describe your visualization in natural language."
142
+ )
143
+
144
+ # Mount Gradio app to FastAPI
145
+ app = mount_gradio_app(app, gr_interface, path="/")
146
 
147
  if __name__ == "__main__":
148
+ import uvicorn
149
  uvicorn.run(app, host="0.0.0.0", port=7860)
150
 
151
+