Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,29 +3,16 @@ import pdfplumber
|
|
3 |
import docx
|
4 |
import openpyxl
|
5 |
from pptx import Presentation
|
6 |
-
import
|
7 |
-
from torchvision import transforms
|
8 |
-
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
9 |
-
from PIL import Image
|
10 |
from transformers import pipeline
|
11 |
import gradio as gr
|
12 |
from fastapi.responses import RedirectResponse
|
13 |
-
import numpy as np
|
14 |
|
15 |
# Initialize FastAPI
|
16 |
app = FastAPI()
|
17 |
|
18 |
-
# Load AI Model for Question Answering
|
19 |
-
qa_pipeline = pipeline("
|
20 |
-
|
21 |
-
# Load Pretrained Object Detection Model (Torchvision)
|
22 |
-
model = fasterrcnn_resnet50_fpn(pretrained=True)
|
23 |
-
model.eval()
|
24 |
-
|
25 |
-
# Image Transformations
|
26 |
-
transform = transforms.Compose([
|
27 |
-
transforms.ToTensor()
|
28 |
-
])
|
29 |
|
30 |
# Function to truncate text to 450 tokens
|
31 |
def truncate_text(text, max_tokens=450):
|
@@ -61,18 +48,12 @@ def extract_text_from_excel(excel_file):
|
|
61 |
text.append(" ".join(map(str, row)))
|
62 |
return "\n".join(text)
|
63 |
|
64 |
-
# Function to extract text from image
|
65 |
def extract_text_from_image(image_file):
|
66 |
-
if isinstance(image_file, np.ndarray): # Check if input is a NumPy array
|
67 |
-
image = Image.fromarray(image_file) # Convert NumPy array to PIL image
|
68 |
-
else:
|
69 |
-
image = Image.open(image_file).convert("RGB") # Handle file input
|
70 |
-
|
71 |
reader = easyocr.Reader(["en"])
|
72 |
-
result = reader.readtext(
|
73 |
return " ".join([res[1] for res in result])
|
74 |
|
75 |
-
# Function to answer questions based on document content
|
76 |
def answer_question_from_document(file, question):
|
77 |
file_ext = file.name.split(".")[-1].lower()
|
78 |
|
@@ -91,22 +72,22 @@ def answer_question_from_document(file, question):
|
|
91 |
return "No text extracted from the document."
|
92 |
|
93 |
truncated_text = truncate_text(text)
|
94 |
-
input_text = f"
|
95 |
-
response = qa_pipeline(input_text
|
96 |
|
97 |
-
return response[0]["
|
98 |
|
99 |
# Function to answer questions based on image content
|
100 |
def answer_question_from_image(image, question):
|
101 |
image_text = extract_text_from_image(image)
|
102 |
if not image_text:
|
103 |
-
return "No
|
104 |
|
105 |
truncated_text = truncate_text(image_text)
|
106 |
-
input_text = f"
|
107 |
-
response = qa_pipeline(input_text
|
108 |
|
109 |
-
return response[0]["
|
110 |
|
111 |
# Gradio UI for Document & Image QA
|
112 |
doc_interface = gr.Interface(
|
|
|
3 |
import docx
|
4 |
import openpyxl
|
5 |
from pptx import Presentation
|
6 |
+
import easyocr
|
|
|
|
|
|
|
7 |
from transformers import pipeline
|
8 |
import gradio as gr
|
9 |
from fastapi.responses import RedirectResponse
|
|
|
10 |
|
11 |
# Initialize FastAPI
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# Load AI Model for Question Answering
|
15 |
+
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-large", tokenizer="google/flan-t5-large", use_fast=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Function to truncate text to 450 tokens
|
18 |
def truncate_text(text, max_tokens=450):
|
|
|
48 |
text.append(" ".join(map(str, row)))
|
49 |
return "\n".join(text)
|
50 |
|
|
|
51 |
def extract_text_from_image(image_file):
|
|
|
|
|
|
|
|
|
|
|
52 |
reader = easyocr.Reader(["en"])
|
53 |
+
result = reader.readtext(image_file)
|
54 |
return " ".join([res[1] for res in result])
|
55 |
|
56 |
+
# Function to answer questions based on document content
|
57 |
def answer_question_from_document(file, question):
|
58 |
file_ext = file.name.split(".")[-1].lower()
|
59 |
|
|
|
72 |
return "No text extracted from the document."
|
73 |
|
74 |
truncated_text = truncate_text(text)
|
75 |
+
input_text = f"Question: {question} Context: {truncated_text}"
|
76 |
+
response = qa_pipeline(input_text)
|
77 |
|
78 |
+
return response[0]["generated_text"]
|
79 |
|
80 |
# Function to answer questions based on image content
|
81 |
def answer_question_from_image(image, question):
|
82 |
image_text = extract_text_from_image(image)
|
83 |
if not image_text:
|
84 |
+
return "No text detected in the image."
|
85 |
|
86 |
truncated_text = truncate_text(image_text)
|
87 |
+
input_text = f"Question: {question} Context: {truncated_text}"
|
88 |
+
response = qa_pipeline(input_text)
|
89 |
|
90 |
+
return response[0]["generated_text"]
|
91 |
|
92 |
# Gradio UI for Document & Image QA
|
93 |
doc_interface = gr.Interface(
|