from fastapi import FastAPI, Form, File, UploadFile from fastapi.responses import RedirectResponse from fastapi.staticfiles import StaticFiles from pydantic import BaseModel from transformers import pipeline import os from PIL import Image import io import pdfplumber import docx import openpyxl import pytesseract from io import BytesIO import fitz # PyMuPDF import easyocr from fastapi.templating import Jinja2Templates from starlette.requests import Request # Initialize the app app = FastAPI() # Mount the static directory to serve HTML, CSS, JS files app.mount("/static", StaticFiles(directory="static"), name="static") # Initialize transformers pipelines qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2") image_qa_pipeline = pipeline("image-question-answering", model="Salesforce/blip-vqa-base", tokenizer="Salesforce/blip-vqa-base") # Initialize EasyOCR for image-based text extraction reader = easyocr.Reader(['en']) # Define a template for rendering HTML templates = Jinja2Templates(directory="templates") # Function to process PDFs def extract_pdf_text(file_path: str): with pdfplumber.open(file_path) as pdf: text = "" for page in pdf.pages: text += page.extract_text() return text # Function to process DOCX files def extract_docx_text(file_path: str): doc = docx.Document(file_path) text = "" for para in doc.paragraphs: text += para.text return text # Function to process PPTX files def extract_pptx_text(file_path: str): from pptx import Presentation prs = Presentation(file_path) text = "" for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text return text # Function to extract text from images using OCR def extract_text_from_image(image: Image): text = pytesseract.image_to_string(image) return text # Home route @app.get("/") def home(): return RedirectResponse(url="/docs") # Function to answer questions based on document content @app.post("/question-answering-doc") async def question_answering_doc(question: str = Form(...), file: UploadFile = File(...)): # Save the uploaded file temporarily file_path = f"temp_files/{file.filename}" os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, "wb") as f: f.write(await file.read()) # Extract text based on file type if file.filename.endswith(".pdf"): text = extract_pdf_text(file_path) elif file.filename.endswith(".docx"): text = extract_docx_text(file_path) elif file.filename.endswith(".pptx"): text = extract_pptx_text(file_path) else: return {"error": "Unsupported file format"} # Use the model for question answering qa_result = qa_pipeline(question=question, context=text) return {"answer": qa_result['answer']} # Function to answer questions based on images @app.post("/question-answering-image") async def question_answering_image(question: str = Form(...), image_file: UploadFile = File(...)): # Open the uploaded image image = Image.open(BytesIO(await image_file.read())) # Use EasyOCR to extract text if the image has textual content image_text = extract_text_from_image(image) # Use the BLIP VQA model for question answering on the image image_qa_result = image_qa_pipeline(image=image, question=question) return {"answer": image_qa_result['answer'], "image_text": image_text} # Serve the application in Hugging Face space @app.get("/docs") async def get_docs(request: Request): return templates.TemplateResponse("index.html", {"request": request})