Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -65,15 +65,13 @@ app = gr.mount_gradio_app(app, gui, path="/")
|
|
| 65 |
@app.get("/")
|
| 66 |
def home():
|
| 67 |
return RedirectResponse(url="/") """
|
| 68 |
-
from fastapi import FastAPI
|
| 69 |
-
from fastapi.responses import RedirectResponse
|
| 70 |
-
import
|
| 71 |
-
import shutil
|
| 72 |
from PIL import Image
|
|
|
|
| 73 |
from transformers import ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
|
| 74 |
from gtts import gTTS
|
| 75 |
-
import torch
|
| 76 |
-
import tempfile
|
| 77 |
import gradio as gr
|
| 78 |
|
| 79 |
app = FastAPI()
|
|
@@ -86,19 +84,30 @@ vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetune
|
|
| 86 |
gpt_tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
| 87 |
gpt_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
| 93 |
with torch.no_grad():
|
| 94 |
outputs = gpt_model.generate(
|
| 95 |
**inputs,
|
| 96 |
-
max_new_tokens=
|
| 97 |
-
do_sample=
|
|
|
|
|
|
|
| 98 |
pad_token_id=gpt_tokenizer.eos_token_id
|
| 99 |
)
|
|
|
|
| 100 |
generated = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
return rewritten
|
| 103 |
|
| 104 |
def answer_question_from_image(image, question):
|
|
@@ -111,16 +120,17 @@ def answer_question_from_image(image, question):
|
|
| 111 |
predicted_id = outputs.logits.argmax(-1).item()
|
| 112 |
short_answer = vqa_model.config.id2label[predicted_id]
|
| 113 |
|
| 114 |
-
# Rewrite
|
| 115 |
-
full_answer = rewrite_answer(
|
| 116 |
|
|
|
|
| 117 |
try:
|
| 118 |
tts = gTTS(text=full_answer)
|
| 119 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
| 120 |
tts.save(tmp.name)
|
| 121 |
audio_path = tmp.name
|
| 122 |
except Exception as e:
|
| 123 |
-
return f"
|
| 124 |
|
| 125 |
return full_answer, audio_path
|
| 126 |
|
|
@@ -128,6 +138,7 @@ def process_image_question(image: Image.Image, question: str):
|
|
| 128 |
answer, audio_path = answer_question_from_image(image, question)
|
| 129 |
return answer, audio_path
|
| 130 |
|
|
|
|
| 131 |
gui = gr.Interface(
|
| 132 |
fn=process_image_question,
|
| 133 |
inputs=[
|
|
@@ -139,11 +150,12 @@ gui = gr.Interface(
|
|
| 139 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
| 140 |
],
|
| 141 |
title="🧠 Image QA with Voice",
|
| 142 |
-
description="Upload an image and ask a question. You'll get a
|
| 143 |
)
|
| 144 |
|
|
|
|
| 145 |
app = gr.mount_gradio_app(app, gui, path="/")
|
| 146 |
|
| 147 |
@app.get("/")
|
| 148 |
def home():
|
| 149 |
-
return RedirectResponse(url="/")
|
|
|
|
| 65 |
@app.get("/")
|
| 66 |
def home():
|
| 67 |
return RedirectResponse(url="/") """
|
| 68 |
+
from fastapi import FastAPI
|
| 69 |
+
from fastapi.responses import RedirectResponse
|
| 70 |
+
import tempfile
|
|
|
|
| 71 |
from PIL import Image
|
| 72 |
+
import torch
|
| 73 |
from transformers import ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
|
| 74 |
from gtts import gTTS
|
|
|
|
|
|
|
| 75 |
import gradio as gr
|
| 76 |
|
| 77 |
app = FastAPI()
|
|
|
|
| 84 |
gpt_tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
| 85 |
gpt_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
| 86 |
|
| 87 |
+
def rewrite_answer(question, short_answer):
|
| 88 |
+
prompt = (
|
| 89 |
+
f"Question: {question}\n"
|
| 90 |
+
f"Short Answer: {short_answer}\n"
|
| 91 |
+
f"Now write a full sentence answering the question:"
|
| 92 |
+
)
|
| 93 |
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
| 94 |
with torch.no_grad():
|
| 95 |
outputs = gpt_model.generate(
|
| 96 |
**inputs,
|
| 97 |
+
max_new_tokens=50,
|
| 98 |
+
do_sample=True,
|
| 99 |
+
top_p=0.9,
|
| 100 |
+
temperature=0.7,
|
| 101 |
pad_token_id=gpt_tokenizer.eos_token_id
|
| 102 |
)
|
| 103 |
+
|
| 104 |
generated = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 105 |
+
|
| 106 |
+
if "Now write a full sentence answering the question:" in generated:
|
| 107 |
+
rewritten = generated.split("Now write a full sentence answering the question:")[-1].strip()
|
| 108 |
+
else:
|
| 109 |
+
rewritten = generated.strip()
|
| 110 |
+
|
| 111 |
return rewritten
|
| 112 |
|
| 113 |
def answer_question_from_image(image, question):
|
|
|
|
| 120 |
predicted_id = outputs.logits.argmax(-1).item()
|
| 121 |
short_answer = vqa_model.config.id2label[predicted_id]
|
| 122 |
|
| 123 |
+
# Rewrite to human-like sentence
|
| 124 |
+
full_answer = rewrite_answer(question, short_answer)
|
| 125 |
|
| 126 |
+
# Convert to speech
|
| 127 |
try:
|
| 128 |
tts = gTTS(text=full_answer)
|
| 129 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
| 130 |
tts.save(tmp.name)
|
| 131 |
audio_path = tmp.name
|
| 132 |
except Exception as e:
|
| 133 |
+
return f"{full_answer}\n\n⚠️ Audio generation error: {e}", None
|
| 134 |
|
| 135 |
return full_answer, audio_path
|
| 136 |
|
|
|
|
| 138 |
answer, audio_path = answer_question_from_image(image, question)
|
| 139 |
return answer, audio_path
|
| 140 |
|
| 141 |
+
# Gradio UI
|
| 142 |
gui = gr.Interface(
|
| 143 |
fn=process_image_question,
|
| 144 |
inputs=[
|
|
|
|
| 150 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
| 151 |
],
|
| 152 |
title="🧠 Image QA with Voice",
|
| 153 |
+
description="Upload an image and ask a question. You'll get a human-like spoken answer."
|
| 154 |
)
|
| 155 |
|
| 156 |
+
# Mount on FastAPI
|
| 157 |
app = gr.mount_gradio_app(app, gui, path="/")
|
| 158 |
|
| 159 |
@app.get("/")
|
| 160 |
def home():
|
| 161 |
+
return RedirectResponse(url="/")
|