Spaces:
Runtime error
Runtime error
Update app.py
Browse filesupdate the interface to use Blocks for more customized GUI with examples
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from PIL import Image
|
3 |
import base64
|
4 |
import io
|
|
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import torch
|
@@ -20,24 +21,38 @@ def predict(sketch, description):
|
|
20 |
controlnet_id = "lllyasviel/sd-controlnet-scribble"
|
21 |
|
22 |
# Load ControlNet model
|
23 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_id
|
24 |
|
25 |
# Create pipeline with ControlNet model
|
26 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet
|
27 |
|
28 |
# Use improved scheduler
|
29 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
30 |
|
31 |
# Enable smart CPU offloading and memory efficient attention
|
32 |
# pipe.enable_model_cpu_offload()
|
33 |
-
pipe.enable_xformers_memory_efficient_attention()
|
34 |
|
|
|
|
|
35 |
|
36 |
-
result = pipe(description, image, num_inference_steps=
|
37 |
|
38 |
return result
|
39 |
-
|
40 |
-
sketchpad
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
import base64
|
4 |
import io
|
5 |
+
import glob
|
6 |
import cv2
|
7 |
import numpy as np
|
8 |
import torch
|
|
|
21 |
controlnet_id = "lllyasviel/sd-controlnet-scribble"
|
22 |
|
23 |
# Load ControlNet model
|
24 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_id)
|
25 |
|
26 |
# Create pipeline with ControlNet model
|
27 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet)
|
28 |
|
29 |
# Use improved scheduler
|
30 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
31 |
|
32 |
# Enable smart CPU offloading and memory efficient attention
|
33 |
# pipe.enable_model_cpu_offload()
|
34 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
35 |
|
36 |
+
# Move pipeline to GPU
|
37 |
+
pipe = pipe.to("cuda")
|
38 |
|
39 |
+
result = pipe(description, image, num_inference_steps=10).images[0]
|
40 |
|
41 |
return result
|
42 |
+
with gr.Blocks() as iface:
|
43 |
+
# Define sketchpad with custom size and stroke width
|
44 |
+
sketchpad = gr.Sketchpad(shape=(400, 300), brush_radius=5, label="Sketchpad- Draw something")
|
45 |
+
txt= gr.Textbox(lines=3, label="Description - Describe your sketch with style")
|
46 |
+
im = gr.Image(label="Output Image", interactive=False)
|
47 |
+
button = gr.Button(value="Submit")
|
48 |
+
button.click(predict, inputs=[sketchpad, txt], outputs=im)
|
49 |
+
flag= gr.CSVLogger()
|
50 |
+
flag.setup([sketchpad, txt, im], "flagged_data_points")
|
51 |
+
button_flag = gr.Button(value="Flag")
|
52 |
+
button_flag.click(lambda *args: flag.flag(args), [sketchpad, txt, im], None, preprocess=False)
|
53 |
+
|
54 |
+
# iface = gr.Interface(fn=predict, inputs=[sketchpad, "text"], outputs=im, live=False, title="Sketch2Image")
|
55 |
+
## get all the file path from flagged/sketch folder into a list
|
56 |
+
sketch_path = glob.glob("flagged/sketch/*.png")
|
57 |
+
gr.Examples(examples = list(map(lambda x: [x ,"draw in the style of crayon by kids"], sketch_path)), inputs=[sketchpad,txt], outputs=im, fn=predict, cache_examples=True)
|
58 |
+
iface.launch()
|