Spaces:
Sleeping
Sleeping
File size: 34,231 Bytes
a25940e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import math
import os
import sys
import re
import time
import shutil
import requests
import gc
from collections import OrderedDict
from concurrent.futures import wait
from datetime import datetime, timedelta
import torch
import torch.distributed as dist
from torch.nn import functional as F
import torch.distributed.checkpoint as dcp
from mmengine import mkdir_or_exist
from mmengine.runner import set_random_seed
from mmengine.utils import get_git_hash
from mmengine.utils.dl_utils import collect_env
from torch.distributed.checkpoint.state_dict import (StateDictOptions,
get_state_dict, set_state_dict)
from torch.distributed.checkpoint.stateful import Stateful
from torch.optim import AdamW
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
from torch.utils.data import ConcatDataset, DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer
from xtuner._lite import (get_device, get_logger,
get_torch_device_module)
from xtuner._lite.accelerate import varlen_attn_is_available, profile_time_and_memory
from xtuner._lite.algorithms.sft import SftCollator, SftTokenizeFunction
from xtuner._lite.chat import CHAT_TEMPLATE_MAP
from xtuner._lite.datasets import (DATASET_CLS_MAP, OPENAI_CONVERT_MAP,
SoftPackDataset, load_datasets)
from xtuner._lite.parallel import (LengthGroupedSampler, ParallelSampler,
setup_parallel)
from xtuner._lite.patches import FSDPConfig, AutoPatch
from xtuner._lite.parallel import (ParallelSampler, setup_parallel)
from xtuner._lite.modelings import register_remote_code
gc.disable()
logger = get_logger()
DEVICE = get_device()
DEVICE_MODULE = get_torch_device_module()
SUPPORT_DATA_FORMATS = OPENAI_CONVERT_MAP.keys()
def log_format(rank, debug=False):
formatter = f'[XTuner][RANK {rank}]'
formatter += '[{time:YYYY-MM-DD HH:mm:ss}][<level>{level}</level>]'
if debug:
formatter += '[<cyan>{name}</cyan>:'
formatter += '<cyan>{function}</cyan>:'
formatter += '<cyan>{line}</cyan>]'
formatter += ' <level>{message}</level>'
return formatter
def send_to_feishu(web_hook, msg):
header = {
"Content-Type" : "application/json;charset=UTF-8"
}
body = {
"msg_type" : "text",
"content" : { "text" : f"<at user_id=\"all\">所有人</at>{msg}"}
}
try:
requests.post(url=web_hook, json=body, headers=header, timeout=1)
except requests.exceptions.RequestException:
pass
def parse_args():
parser = argparse.ArgumentParser(description='Train LLM')
model_args = parser.add_argument_group('model', 'Model Related Settings')
model_args.add_argument('--llm', help='repo id or local path of the model')
model_args.add_argument(
'-t',
'--tokenizer',
help=('repo id or local path of the tokenizer. '
'Defaults to the same as `model`'))
model_args.add_argument(
'--chat-template',
choices=CHAT_TEMPLATE_MAP.keys(),
help=('repo id or local path of the tokenizer. '
'Defaults to the same as `model`'))
model_args.add_argument(
'--dtype',
default='auto',
choices=['fp16', 'bf16', 'auto'],
help=("the dtype of the model forward. When set to 'auto', it will "
'automatically determine whether bf16 is available, '
'prioritizing the use of bf16.'))
model_args.add_argument(
'--selective-recompute',
default=1.0,
type=float,
help=('the ratio of re-computation for transforemer layers. '
'The maximum is 1; the larger the value, the less memory '
'required for training. The default is 1, meaning all layers '
'need to be re-computated.'))
model_args.add_argument('--cpu-offload', action='store_true', help=(''))
model_args.add_argument('--compile', action='store_true', help=(''))
model_args.add_argument('--sp-size', type=int, default=1, help='')
model_args.add_argument('--tp-size', type=int, default=1, help='')
data_args = parser.add_argument_group('data', 'Dataset Related Settings')
data_args.add_argument(
'--datasets',
nargs='*',
help=('repo id or local path or dir of the datasets. For repo ids, '
'the `dset-sources` needs to be appropriately set to '
'`modelscope` or `huggingface`. For local dir, all json and '
'jsonl files will be loaded by default. The type of loaded '
'files can be controlled by setting `dset-file-type`'))
data_args.add_argument(
'--dset-file-types',
nargs='*',
default=DATASET_CLS_MAP.keys(),
choices=DATASET_CLS_MAP.keys(),
help='the file type that needs to be loaded')
data_args.add_argument(
'--dset-sources',
nargs='*',
default=['local'],
choices=['local', 'huggingface', 'modelscope'],
help=('the source of each dataset; it can accept one or the same '
'number of args as the number of `datasets`, with one arg '
'indicating that all datasets come from the same source. '
'`local` represents the local path, `huggingface` represents '
'the open-source data in the Huggingface Hub, `modelscope` '
'indicates the open-source data in the Modelscope Hub.'))
data_args.add_argument(
'--dset-formats',
nargs='*',
default=['openai'],
help=('the format of each dataset; it can accept one or the same '
'number of args as the number of `datasets`, with one arg '
'indicating that all datasets are the same format.'))
data_args.add_argument(
'--dset-sample-ratios',
nargs='*',
type=float,
default=[1.0],
help=('the sample ratio of each dataset; it can accept one or the '
'same number of args as the number of `datasets`, with one arg '
'indicating that all datasets use the same sample ratio.'))
data_args.add_argument(
'--dset-cache-dir',
help=('the cache dir of the loaded datasets. When the `datasets` is '
'set, the loaded datasets will be cached to this dir. If the '
'`datasets` are not set, the cached dataset in this dir will be '
'loaded.'))
data_args.add_argument(
'--dset-pack-level',
choices=['hard', 'soft'],
help=('the level of data packing. When `hard`, multiple data will be '
'packed to `max_length`, potentially causing some data to be '
'truncated, and the length of the packed data will always '
'be `max_length`; When `soft`, it will pack multiple data '
'into nearly `max_length` without truncating the data.'))
data_args.add_argument(
'--global-pack',
action='store_true',
help='A subsequence in the packed data comes from different files.')
data_args.add_argument(
'--max-length',
type=int,
default=2048,
help=('the maximum length of each piece of data, any excess will be '
'truncated.'))
data_args.add_argument(
'--num-workers',
type=int,
default=8,
help='how many subprocesses to use for data loading.')
data_args.add_argument('--file-pattern', type=str, default=None)
data_args.add_argument('--group-by-length', action='store_true')
optim_args = parser.add_argument_group('optim', 'Optim Related Settings')
optim_args.add_argument(
'--mirco-batch-size',
type=int,
default=1,
help='batch size for each forward + backward pass')
optim_args.add_argument(
'--global-batch-size',
type=int,
default=16,
help='batch size for each optimizer step')
optim_args.add_argument(
'--lr', default=4e-5, type=float, help='learning rate.')
optim_args.add_argument(
'--lr-min', default=6e-6, type=float, help='min learning rate.')
optim_args.add_argument(
'--wd', default=0.01, type=float, help='weight decay.')
optim_args.add_argument(
'--max-grad-norm', default=1, type=float, help='gradient clipping')
optim_args.add_argument(
'-e', '--epochs', default=1, type=int, help='total training epochs.')
optim_args.add_argument(
'--warmup-ratio',
default=0.03,
type=float,
help=('the proportion of training steps for learning rate warm-up in '
'relation to the total training steps.'))
parser.add_argument('-c', '--config', default=None)
parser.add_argument(
'--work-dir',
default='work_dirs',
help='the dir to save logs and checkpoints')
parser.add_argument(
'--feishu-webhook', default=None, help='Webhook of Feishu Group Chat Bot')
parser.add_argument('--gc-interval', default=100, type=int)
parser.add_argument(
'--checkpoint-interval',
default=-1,
type=float,
help=('how many steps to save a checkpoint; it can be a floating '
'point number less than 1, or an integer greater than or equal '
"to 1. When it's a floating point, it will be multiplied by the "
'total number of training steps.'))
parser.add_argument(
'--checkpoint-max-keep',
default=1,
type=int,
help=('Maximum number of saved checkpoints。'))
parser.add_argument(
'--checkpoint-drop-optimizer',
action='store_true',
help=('only model parameters are saved when saving a checkpoint. '
'This can significantly reduce the size of checkpoint files, '
'but the saved checkpoints cannot be resumed.'))
parser.add_argument(
'--log-interval', default=1, type=int, help='log interval')
parser.add_argument(
'--resume',
action='store_true',
help='specify checkpoint path to be resumed from.')
parser.add_argument(
'--seed', type=int, default=0, help='random seed for the training')
parser.add_argument(
'--debug', action='store_true', help='Set logger level to `DEBUG`')
args = parser.parse_args()
return args
def is_interval(step, total_steps, interval):
return (step + 1) % interval == 0 or (step + 1) == total_steps
class TrainState(Stateful):
def __init__(self, total_steps, seed):
super().__init__()
self.seed = seed
self.cur_step = -1
self.total_steps = total_steps
self.if_nan_skip_steps = 0
def load_state_dict(self, state_dict):
assert self.total_steps == state_dict['total_steps']
self.cur_step = state_dict['current_step']
self.if_nan_skip_steps = state_dict['if_nan_skip_steps']
def state_dict(self):
return {
'seed': self.seed, 'current_step': self.cur_step,
'total_steps': self.total_steps,
'if_nan_skip_steps': self.if_nan_skip_steps
}
def step(self):
self.cur_step = self.cur_step + 1
def found_nan(self):
self.if_nan_skip_steps += 1
def find_latest_timestamp(work_dir):
# Initialize variables to keep track of the latest timestamp and its corresponding directory
latest_timestamp = None
# Iterate over all files and directories in the specified directory
for entry in os.listdir(work_dir):
full_path = os.path.join(work_dir, entry)
# Check if the entry is a directory
if os.path.isdir(full_path):
try:
# Try to interpret the directory name as a timestamp
timestamp = datetime.strptime(entry, '%Y%m%d%H%M%S')
# Update the latest timestamp and directory if this one is more recent
if latest_timestamp is None or timestamp > latest_timestamp:
latest_timestamp = timestamp
except ValueError:
# If conversion fails, skip this entry
continue
if latest_timestamp is not None:
latest_timestamp = latest_timestamp.strftime( '%Y%m%d%H%M%S')
return latest_timestamp
def find_checkpoints(directory, prefix='ckpt'):
if prefix == 'ckpt':
pattern = r'^ckpt-(\d+)$'
elif prefix == 'hf':
pattern = r'^hf-(\d+)$'
else:
raise ValueError
latest_step = -1
latest_checkpoint = None
all_folders = [d for d in os.listdir(directory) if os.path.isdir(os.path.join(directory, d))]
checkpoints = []
for folder in all_folders:
match = re.match(pattern, folder)
if match:
checkpoints.append((folder, int(match.group(1))))
checkpoints.sort(key=lambda x: x[1])
return [os.path.join(directory, folder[0]) for folder in checkpoints]
# @logger.catch
def sft(args):
###########################################################################
# 1. Environment #
###########################################################################
setup_parallel()
set_random_seed(args.seed)
register_remote_code()
world_size = dist.get_world_size()
cpu_comm_timeout = timedelta(minutes=60)
gloo_group = dist.new_group(backend='gloo', timeout=cpu_comm_timeout)
rank = dist.get_rank()
if args.resume:
mkdir_or_exist(args.work_dir)
timestamp = find_latest_timestamp(args.work_dir)
if timestamp is None:
timestamp = datetime.now().strftime('%Y%m%d%H%M%S')
else:
timestamp = datetime.now().strftime('%Y%m%d%H%M%S')
objects = [timestamp]
dist.broadcast_object_list(objects, src=0)
timestamp = objects[0]
args.work_dir = os.path.join(args.work_dir, timestamp)
mkdir_or_exist(args.work_dir)
log_file = os.path.join(args.work_dir, f'rank{rank}.log')
logger.remove()
# Change the log format printed in the terminal
lvl = 'DEBUG' if args.debug else 'INFO'
logger.add(sys.stderr, level=lvl, format=log_format(rank, args.debug))
# Change the format saved in the log file
logger.add(log_file, format=log_format(rank), backtrace=True, catch=True)
if args.feishu_webhook and rank == 0:
def log_handler(record):
if record['level'].name == "WARNING":
send_to_feishu(args.feishu_webhook, f"[WARNING] {record['message']}\n{args.work_dir}")
elif record['level'].name == "TRACE":
send_to_feishu(args.feishu_webhook, f"[TRACE] {record['message']}\n{args.work_dir}")
elif record['level'].name == "ERROR":
send_to_feishu(args.feishu_webhook, f"[ERROR] 任务失败\n{args.work_dir}")
logger.add(sys.stderr, level='TRACE', filter=log_handler, catch=True)
logger.trace('任务开始')
logger.info(args)
if rank == 0:
env = collect_env()
import transformers
import xtuner
env['Transformers'] = transformers.__version__
env['XTuner'] = f'{xtuner.__version__}+{get_git_hash(digits=6)}'
runtime_env = OrderedDict()
runtime_env.update(env)
runtime_env['Seed'] = args.seed
runtime_env['World Size'] = world_size
runtime_env_info = '\n ' + '\n '.join(
f'{k}: {v}' for k, v in runtime_env.items())
dash_line = '-' * 60
logger.info('\n' + dash_line + '\nRuntime environment:' +
runtime_env_info + '\n' + dash_line + '\n')
# ------------------- Environment End ------------------------------ #
###########################################################################
# 2. FSDP #
###########################################################################
if args.dtype == 'auto':
args.dtype = 'bf16' if DEVICE_MODULE.is_bf16_supported() else 'fp16'
if args.dtype == 'fp16':
dtype = torch.float16
elif args.dtype == 'bf16':
if DEVICE_MODULE.is_bf16_supported():
dtype = torch.bfloat16
else:
raise RuntimeError('The device does not support `bf16`, '
'please set `dtype` to `fp16`.')
else:
raise RuntimeError('`dtype` only supports `fp16`, `bf16` or `auto`, '
f'but found {args.dtype}.')
with torch.device('meta'):
llm = AutoModelForCausalLM.from_pretrained(
args.llm, attn_implementation='flash_attention_2', torch_dtype=dtype)
for module in llm.modules():
for p_name, param in module.named_parameters(recurse=False):
if param.requires_grad:
param_fp32 = torch.nn.Parameter(
param.to(dtype=torch.float32))
setattr(module, p_name, param_fp32)
fsdp_config = FSDPConfig(
tp_size=args.tp_size,
sp_size=args.sp_size, reshard_after_forward=True,
cpu_offload=args.cpu_offload, reduce_dtype=dtype, param_dtype=dtype,
torch_compile=args.compile, max_length=args.max_length * args.mirco_batch_size
)
with profile_time_and_memory('[FSDP]'):
patched_llm = AutoPatch.from_causal_lm(llm, fsdp_config)
dp_mesh = patched_llm.data_parallel_mesh
data_mesh = patched_llm.data_mesh
dp_size = patched_llm.data_parallel_mesh.size()
if args.global_batch_size < dp_size or args.global_batch_size % dp_size:
raise ValueError(f'The `global_batch_size`({args.global_batch_size}) '
'should be divisible by the '
f'world_size({world_size}).')
if (args.global_batch_size / dp_size) % args.mirco_batch_size:
raise ValueError(f'The `global_batch_size`({args.global_batch_size}) '
f'should be divisible by the world_size({world_size})'
f' * `mirco_batch_size`({args.mirco_batch_size})')
dist.barrier()
gc.collect()
# -------------------------- FSDP End ------------------------------ #
###########################################################################
# 3. Dataset & Dataloader #
###########################################################################
start_load_data_t = time.time()
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer if args.tokenizer else args.llm,
use_fast=False,
padding_side='right')
if args.chat_template:
chat_template = CHAT_TEMPLATE_MAP[args.chat_template]
else:
chat_template = patched_llm.chat_template
tokenize_fns = []
for dset_format in args.dset_formats:
# If your data format is not in `SUPPORT_DATA_FORMATS`, you should
# redefine a `tokenize_fn`, defining how to convert a piece of raw
# data into tokenized data.
# The tokenized data must include `input_ids`, `labels``,
# and `num_tokens`.
tokenize_fn = SftTokenizeFunction(tokenizer, chat_template,
dset_format)
tokenize_fns.append(tokenize_fn)
_datasets = load_datasets(
paths=args.datasets,
cache_dir=args.dset_cache_dir,
file_types=args.dset_file_types,
sources=args.dset_sources,
sample_ratios=args.dset_sample_ratios,
map_fns=tokenize_fns,
file_pattern=args.file_pattern,
max_length=args.max_length
)
if args.dset_pack_level and rank == 0 and args.debug:
# Only the tokenized datasets can count the number of tokens
num_tokens = sum(dset.num_tokens.sum() for dset in _datasets)
logger.debug(f'[Dataset] {num_tokens} tokens.')
if args.dset_pack_level == 'soft':
train_dataset = SoftPackDataset(_datasets, target=args.max_length, blend=args.global_pack)
elif args.dset_pack_level == 'hard':
raise NotImplementedError
else:
train_dataset = ConcatDataset(_datasets)
if args.dset_pack_level and rank == 0:
ori_samples = sum([len(dset) for dset in _datasets])
packed_samples = len(train_dataset)
logger.info(f'[Dataset] (Original) {ori_samples} samples.')
logger.info(f'[Dataset] (Packed) {packed_samples} samples.')
assert varlen_attn_is_available()
collator = SftCollator(
pack_batch=varlen_attn_is_available(),
max_length=args.max_length)
if args.group_by_length:
sampler = LengthGroupedSampler(train_dataset, patched_llm.data_parallel_mesh,
args.global_batch_size)
else:
sampler = ParallelSampler(
train_dataset,
patched_llm.data_parallel_mesh,
args.global_batch_size, shuffle=True)
gc.collect()
train_dataloader = DataLoader(
train_dataset,
batch_size=args.mirco_batch_size,
num_workers=args.num_workers,
# Ensure to round up or drop last based on the `global_batch_size`,
# if you want to replace a custom sampler.
sampler=sampler,
collate_fn=collator,
persistent_workers=args.num_workers > 0)
if rank == 0:
logger.info(f'[Dataloader] {len(train_dataloader)} batches.')
_first_batch = [train_dataset[i] for i in range(args.mirco_batch_size)]
_first_batch = collator(_first_batch)
_decoded = tokenizer.batch_decode(_first_batch['input_ids'])
logger.debug(f'[Dataloader] Training Batch:\n{_first_batch}')
logger.debug(f'[Dataloader] Training Batch(Decoded):\n{_decoded}')
dist.barrier()
gc.collect()
load_data_cost_time = time.time() - start_load_data_t
logger.info(f'[Dataset & Dataloader] Cost {load_data_cost_time:.2f}s')
# ------------------- Dataset & Dataloader End --------------------- #
###########################################################################
# 4. Optimizer & Scheduler #
###########################################################################
optimizer = AdamW(
patched_llm.trainable_parameters(),
lr=args.lr,
weight_decay=args.wd,
betas=(0.9, 0.95))
global_batch_size = args.global_batch_size
mirco_batch_size = args.mirco_batch_size
# `iter` means once forward+backward
# `step` means once optimizer step
# `iters_per_step` means gradient accumulative counts
iters_per_step = global_batch_size // mirco_batch_size // dp_size
iters_per_epoch = len(train_dataloader)
steps_per_epoch = math.ceil(iters_per_epoch / iters_per_step)
total_epochs = args.epochs
total_steps = steps_per_epoch * total_epochs
if_nan_skip_steps = 0
train_state = TrainState(total_steps, args.seed)
if args.checkpoint_interval == -1:
checkpoint_interval = total_steps
elif args.checkpoint_interval < 1:
checkpoint_interval = int(total_steps * args.checkpoint_interval)
else:
checkpoint_interval = int(args.checkpoint_interval)
warmup_steps = int(args.warmup_ratio * total_steps)
def warmup_fn(x):
return x / warmup_steps if x < warmup_steps else 1
warmup_scheduler = LambdaLR(optimizer, warmup_fn)
cosine_scheduler = CosineAnnealingLR(
optimizer, T_max=total_steps - warmup_steps, eta_min=args.lr_min)
start_step = 0
gc.collect()
# ---------------- Optimizer & Scheduler End ----------------------- #
###########################################################################
# 5. (Optional) Resume #
###########################################################################
if args.resume:
_checkpoints = find_checkpoints(args.work_dir)
latest_checkpoint = None
for _ckpt_dir in reversed(_checkpoints):
if os.path.exists(os.path.join(_ckpt_dir, '.metadata')):
latest_checkpoint = _ckpt_dir
break
if latest_checkpoint:
with profile_time_and_memory('[Resume]'):
_options = StateDictOptions(
cpu_offload=True, ignore_frozen_params=True)
(shard_model_state_dict,
shard_optimizer_state_dict) = get_state_dict(
patched_llm.patched_model, optimizer, options=_options)
state_dict = {
'model': shard_model_state_dict,
'optimizer': shard_optimizer_state_dict,
'train_state': train_state,
}
# inplace state_dict
dcp.load(
state_dict=state_dict,
checkpoint_id=latest_checkpoint,
)
_options = StateDictOptions(
cpu_offload=True, strict=False)
set_state_dict(
patched_llm.patched_model,
optimizer,
model_state_dict=state_dict["model"],
optim_state_dict=state_dict["optimizer"],
options=_options
)
start_step = train_state.cur_step + 1
else:
logger.warning(f'There is no checkpoint available for resuming training in {args.work_dir}.')
###########################################################################
# 6. Training #
###########################################################################
ckpt_handle = None
start_train_t = time.time()
DEVICE_MODULE.empty_cache()
DEVICE_MODULE.reset_peak_memory_stats()
max_memory = DEVICE_MODULE.max_memory_allocated()
logger.info('[Train] Begin Train Loop. The current GPU memory is '
f'{(max_memory / 1024**3):.1f}GB')
for step in range(start_step, total_steps):
if is_interval(step + 1, total_steps, args.gc_interval):
gc.collect()
epoch = step // steps_per_epoch
epoch_inner_step = step % steps_per_epoch
if epoch_inner_step == 0 or step == start_step:
# For the first step of each epoch, the data order needs to be
# readjusted.
# Or after resuming, for the first step, the dataloader needs to
# be adjusted to the position before resume.
train_dataloader.sampler.set_epoch(epoch, epoch_inner_step * iters_per_step )
data_iterator = iter(train_dataloader)
train_state.step()
if step <= warmup_steps:
warmup_scheduler.step(step)
cur_lr = warmup_scheduler.get_last_lr()[0]
else:
cosine_scheduler.step(step)
cur_lr = cosine_scheduler.get_last_lr()[0]
DEVICE_MODULE.reset_peak_memory_stats()
step_loss = 0
step_data_time = 0
step_start_t = time.time()
step_consumed_tokens = 0
_data_start_t = time.time()
step_data_list = [next(data_iterator) for _ in range(iters_per_step)]
rank_grad_tokens = 0
for _iter in range(iters_per_step):
_iter_data = step_data_list[_iter]
_iter_labels = _iter_data['labels'][:, 1:]
rank_grad_tokens += (_iter_labels >= 0).sum()
rank_grad_tokens = rank_grad_tokens.to(DEVICE)
dist.all_reduce(rank_grad_tokens, group=patched_llm.data_parallel_mesh.get_group())
global_grad_tokens = rank_grad_tokens
step_data_time = time.time() - _data_start_t
for _iter in range(iters_per_step):
data = step_data_list[_iter]
input_ids = data['input_ids'][:, :-1].to(DEVICE)
labels = data['labels'][:, 1:].to(DEVICE)
num_tokens = data['num_tokens'].tolist()
if num_tokens[-1] == 1:
num_tokens = num_tokens[:-1]
else:
num_tokens[-1] = num_tokens[-1] - 1
cu_seq_lens = torch.cumsum(torch.IntTensor([0] + num_tokens), dim=0).to(DEVICE).int()
position_ids = [torch.arange(num) for num in num_tokens]
position_ids = torch.cat(position_ids, dim=0).to(DEVICE).unsqueeze_(0)
patched_llm.train()
loss = patched_llm(
input_ids=input_ids,
position_ids=position_ids,
labels=labels,
label_shifted=True,
use_cache=False,
cu_seq_lens_q=cu_seq_lens,
cu_seq_lens_k=cu_seq_lens,
max_length_q=max(num_tokens),
max_length_k=max(num_tokens),
sequence_parallel_mesh=patched_llm.sequence_parallel_mesh,
).loss
loss = loss * (labels >= 0).sum() / global_grad_tokens * dp_size
loss.backward()
step_loss += loss.item()
step_consumed_tokens += sum(num_tokens) / data_mesh.size()
step_reduced_loss = torch.Tensor([step_loss]).to(DEVICE)
dist.all_reduce(step_reduced_loss, group=dp_mesh.get_group())
step_reduced_loss = step_reduced_loss.item() / dp_size
grad_norm = patched_llm.clip_grad_norm(args.max_grad_norm)
if grad_norm.isnan() or grad_norm.isinf():
train_state.found_nan()
logger.warning(f"[Step {step}] The grad norm is NaN or Inf, skip this step. Skipped {train_state.if_nan_skip_steps} steps in total.")
optimizer.zero_grad()
else:
optimizer.step()
optimizer.zero_grad()
step_time = time.time() - step_start_t
eta = step_time * (total_steps - step)
eta = timedelta(seconds=int(eta))
tgs = int(step_consumed_tokens / step_time)
max_memory = DEVICE_MODULE.max_memory_allocated()
if is_interval(step, total_steps, args.log_interval):
logger.info(f'[Train] (Epoch {epoch + 1}) Step '
f'{step + 1}/{total_steps} '
f'lr: {cur_lr:.6f} loss: {step_loss:.3f} '
f'loss(reduced): {step_reduced_loss:.3f} '
f'grad_norm: {grad_norm:.2f} '
f'if_nan_skip: {train_state.if_nan_skip_steps} '
f'max_memory: {(max_memory / 1024**3):.1f}GB '
f'text_tokens: {step_consumed_tokens} '
f'tgs: {tgs} data_time: {step_data_time:.2f}s '
f'time: {step_time:.2f}s '
f'eta: {eta}')
if is_interval(step, total_steps, max(1, int(total_steps * 0.1))):
logger.trace(f'Step {step}/{total_steps}, loss {step_loss:.3f}, tgs {tgs}')
if is_interval(step, total_steps, checkpoint_interval):
num_digits = len(str(abs(total_steps)))
work_dir = args.work_dir
ckpt_dir = os.path.join(work_dir, f'ckpt-{step+1:0{num_digits}}')
hf_dir = os.path.join(work_dir, f'hf-{step+1:0{num_digits}}')
with profile_time_and_memory('[HF Checkpoint]'):
patched_llm.save_pretrained(hf_dir)
saved_hf_checkpoints = find_checkpoints(args.work_dir, prefix='hf')
if len(saved_hf_checkpoints) > args.checkpoint_max_keep:
for _ckpt in saved_hf_checkpoints[:-args.checkpoint_max_keep]:
if rank == 0:
shutil.rmtree(_ckpt)
logger.info('[HF Checkpoint] Delete the oldest checkpoint.')
if args.checkpoint_drop_optimizer:
logger.warning('The saved checkpoint cannot be resumed. '
'If you want to save a resumable checkpoint, '
'please remove `--checkpoint-drop-optimizer` '
'from the command.')
else:
with profile_time_and_memory('[PT Checkpoint]'):
if ckpt_handle is not None:
wait([ckpt_handle])
# FSDP cannot be saved via torch.save
# Refer to https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html # noqa: E501
_options = StateDictOptions(
cpu_offload=True, ignore_frozen_params=True)
(shard_model_state_dict,
shard_optimizer_state_dict) = get_state_dict(
llm, optimizer, options=_options)
state_dict = {
'model': shard_model_state_dict,
'optimizer': shard_optimizer_state_dict,
'train_state': train_state.state_dict(),
}
mkdir_or_exist(ckpt_dir)
ckpt_handle = dcp.async_save(state_dict, checkpoint_id=ckpt_dir, process_group=gloo_group)
saved_checkpoints = find_checkpoints(args.work_dir)
if len(saved_checkpoints) > args.checkpoint_max_keep:
for _ckpt in saved_checkpoints[:-args.checkpoint_max_keep]:
if rank == 0:
shutil.rmtree(_ckpt)
logger.info('[PT Checkpoint] Delete the oldest checkpoint.')
if ckpt_handle is not None:
wait([ckpt_handle])
logger.trace('Task Finished')
train_cost_time = time.time() - start_train_t
logger.info(f'[Train] Cost {timedelta(seconds=int(train_cost_time))}')
# ------------------------ Training End ---------------------------- #
if __name__ == '__main__':
args = parse_args()
sft(args)
|