Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
|
7 |
+
def compute_df():
|
8 |
+
api = HfApi()
|
9 |
+
# download all files in https://huggingface.co/illuin-cde/baselines
|
10 |
+
files = [f for f in api.list_repo_files("illuin-cde/baselines") if f.startswith("metrics")]
|
11 |
+
print(files)
|
12 |
+
|
13 |
+
metrics = []
|
14 |
+
for file in files:
|
15 |
+
result_path = api.hf_hub_download("illuin-cde/baselines", filename=file)
|
16 |
+
with open(result_path, "r") as f:
|
17 |
+
dic = json.load(f)
|
18 |
+
dic.update(dic["metrics"])
|
19 |
+
del dic["metrics"]
|
20 |
+
metrics.append(dic)
|
21 |
+
|
22 |
+
df = pd.DataFrame(metrics)
|
23 |
+
df = df[["model", "dataset", "split", "is_contextual", "ndcg_at_1", "ndcg_at_5", "ndcg_at_10", "ndcg_at_100"]]
|
24 |
+
df["model"] = df["model"].apply(lambda x: x.split("/")[-1])
|
25 |
+
df["dataset"] = df["dataset"].apply(lambda x: x.split("/")[-1])
|
26 |
+
# round all numeric columns
|
27 |
+
df = df.round(3)
|
28 |
+
|
29 |
+
# sort by ndcg_at_5
|
30 |
+
df = df.sort_values("ndcg_at_5", ascending=False)
|
31 |
+
|
32 |
+
# gradio display
|
33 |
+
gradio_df = gr.Dataframe(df)
|
34 |
+
return gradio_df
|
35 |
+
|
36 |
+
# refresh button and precompute
|
37 |
+
gr.Interface(fn=compute_df, title="Results Leaderboard", inputs=None, outputs="dataframe").launch()
|