manu commited on
Commit
8533f16
·
verified ·
1 Parent(s): c4d23b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -7
app.py CHANGED
@@ -10,28 +10,34 @@ api = HfApi(token=token)
10
 
11
 
12
  def compute_df():
13
-
14
  # download all files in https://huggingface.co/illuin-cde/baselines
15
- files = [f for f in api.list_repo_files("illuin-cde/baselines") if f.startswith("metrics")]
16
  print(files)
 
17
  metrics = []
 
18
  for file in files:
19
- result_path = api.hf_hub_download("illuin-cde/baselines", filename=file)
20
  with open(result_path, "r") as f:
21
  dic = json.load(f)
22
- dic.update(dic["metrics"])
 
 
 
23
  del dic["metrics"]
24
  metrics.append(dic)
25
 
26
  df = pd.DataFrame(metrics)
27
- df = df[["model", "dataset", "split", "is_contextual", "ndcg_at_1", "ndcg_at_5", "ndcg_at_10", "ndcg_at_100"]]
28
  df["model"] = df["model"].apply(lambda x: x.split("/")[-1])
29
- df["dataset"] = df["dataset"].apply(lambda x: x.split("/")[-1])
30
  # round all numeric columns
 
 
31
  df = df.round(3)
32
 
33
  # sort by ndcg_at_5
34
- df = df.sort_values("ndcg_at_5", ascending=False)
35
 
36
  # gradio display
37
  gradio_df = gr.Dataframe(df)
 
10
 
11
 
12
  def compute_df():
13
+ api = HfApi()
14
  # download all files in https://huggingface.co/illuin-cde/baselines
15
+ files = [f for f in api.list_repo_files("illuin-cde/baselines-v2") if f.startswith("metrics")]
16
  print(files)
17
+
18
  metrics = []
19
+ cols = ["model", "is_contextual"]
20
  for file in files:
21
+ result_path = api.hf_hub_download("illuin-cde/baselines-v2", filename=file)
22
  with open(result_path, "r") as f:
23
  dic = json.load(f)
24
+ metrics_cur = dic["metrics"]
25
+ for k, v in metrics_cur.items():
26
+ dic.update({k: v["ndcg_at_5"]})
27
+ cols.append(k)
28
  del dic["metrics"]
29
  metrics.append(dic)
30
 
31
  df = pd.DataFrame(metrics)
32
+ df = df[cols]
33
  df["model"] = df["model"].apply(lambda x: x.split("/")[-1])
 
34
  # round all numeric columns
35
+ # avg all numeric columns
36
+ df["avg"] = df.iloc[:, 2:].mean(axis=1)
37
  df = df.round(3)
38
 
39
  # sort by ndcg_at_5
40
+ df = df.sort_values(by="avg", ascending=False)
41
 
42
  # gradio display
43
  gradio_df = gr.Dataframe(df)