Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,28 +10,34 @@ api = HfApi(token=token)
|
|
10 |
|
11 |
|
12 |
def compute_df():
|
13 |
-
|
14 |
# download all files in https://huggingface.co/illuin-cde/baselines
|
15 |
-
files = [f for f in api.list_repo_files("illuin-cde/baselines") if f.startswith("metrics")]
|
16 |
print(files)
|
|
|
17 |
metrics = []
|
|
|
18 |
for file in files:
|
19 |
-
result_path = api.hf_hub_download("illuin-cde/baselines", filename=file)
|
20 |
with open(result_path, "r") as f:
|
21 |
dic = json.load(f)
|
22 |
-
dic
|
|
|
|
|
|
|
23 |
del dic["metrics"]
|
24 |
metrics.append(dic)
|
25 |
|
26 |
df = pd.DataFrame(metrics)
|
27 |
-
df = df[
|
28 |
df["model"] = df["model"].apply(lambda x: x.split("/")[-1])
|
29 |
-
df["dataset"] = df["dataset"].apply(lambda x: x.split("/")[-1])
|
30 |
# round all numeric columns
|
|
|
|
|
31 |
df = df.round(3)
|
32 |
|
33 |
# sort by ndcg_at_5
|
34 |
-
df = df.sort_values("
|
35 |
|
36 |
# gradio display
|
37 |
gradio_df = gr.Dataframe(df)
|
|
|
10 |
|
11 |
|
12 |
def compute_df():
|
13 |
+
api = HfApi()
|
14 |
# download all files in https://huggingface.co/illuin-cde/baselines
|
15 |
+
files = [f for f in api.list_repo_files("illuin-cde/baselines-v2") if f.startswith("metrics")]
|
16 |
print(files)
|
17 |
+
|
18 |
metrics = []
|
19 |
+
cols = ["model", "is_contextual"]
|
20 |
for file in files:
|
21 |
+
result_path = api.hf_hub_download("illuin-cde/baselines-v2", filename=file)
|
22 |
with open(result_path, "r") as f:
|
23 |
dic = json.load(f)
|
24 |
+
metrics_cur = dic["metrics"]
|
25 |
+
for k, v in metrics_cur.items():
|
26 |
+
dic.update({k: v["ndcg_at_5"]})
|
27 |
+
cols.append(k)
|
28 |
del dic["metrics"]
|
29 |
metrics.append(dic)
|
30 |
|
31 |
df = pd.DataFrame(metrics)
|
32 |
+
df = df[cols]
|
33 |
df["model"] = df["model"].apply(lambda x: x.split("/")[-1])
|
|
|
34 |
# round all numeric columns
|
35 |
+
# avg all numeric columns
|
36 |
+
df["avg"] = df.iloc[:, 2:].mean(axis=1)
|
37 |
df = df.round(3)
|
38 |
|
39 |
# sort by ndcg_at_5
|
40 |
+
df = df.sort_values(by="avg", ascending=False)
|
41 |
|
42 |
# gradio display
|
43 |
gradio_df = gr.Dataframe(df)
|