import gradio as gr from huggingface_hub import InferenceClient import sys import io import traceback import re # Import the regular expressions module # Initialize the AI model model_name = "Qwen/Qwen2.5-72B-Instruct" client = InferenceClient(model_name) def llm_inference(user_sample): eos_token = "<|endoftext|>" output = client.chat.completions.create( messages=[ { "role": "system", "content": "You are a Python language guide. Write code on the user topic. If the input is code, correct it for mistakes." }, { "role": "user", "content": f"Write only python code without any explanation: {user_sample}" }, ], stream=False, temperature=0.7, top_p=0.1, max_tokens=412, stop=[eos_token] ) response = '' for choice in output.choices: response += choice['message']['content'] return response def execute_code(code): old_stdout = sys.stdout redirected_output = sys.stdout = io.StringIO() try: exec(code, {}) output = redirected_output.getvalue() except Exception as e: output = f"Error: {e}\n{traceback.format_exc()}" finally: sys.stdout = old_stdout return output def is_math_task(user_input): """ Simple heuristic to determine if the user input is a math task. This can be enhanced with more sophisticated methods or NLP techniques. """ math_keywords = ['calculate', 'compute', 'solve', 'integrate', 'differentiate', 'derivative', 'integral', 'factorial', 'sum', 'product'] operators = ['+', '-', '*', '/', '^', '**', 'sqrt', 'sin', 'cos', 'tan', 'log', 'exp'] user_input_lower = user_input.lower() return any(keyword in user_input_lower for keyword in math_keywords) or any(op in user_input for op in operators) def chat(user_input, history): """ Handles the chat interaction. If the user input is detected as a math task, it generates Python code to solve it, strips any code tags, executes the code, and returns the result. """ if is_math_task(user_input): # Generate Python code for the math task generated_code = llm_inference(f"Create a Python program to solve the following math problem:\n{user_input}") # Strip code tags using regex # This regex removes ```python and ``` or any other markdown code fences cleaned_code = re.sub(r"```(?:python)?\n?", "", generated_code).strip() cleaned_code = re.sub(r"```", "", cleaned_code).strip() # Execute the cleaned code execution_result = execute_code(cleaned_code) # Prepare the responses assistant_response = f"**Generated Python Code:**\n```python\n{cleaned_code}\n```\n\n**Execution Result:**\n```\n{execution_result}\n```" else: # For regular chat messages, use the AI's response assistant_response = llm_inference(user_input) # Append to chat history history.append((user_input, assistant_response)) return history, history with gr.Blocks() as demo: gr.Markdown("# 🐍 Python Helper Chatbot") with gr.Tab("Chat"): chatbot = gr.Chatbot() msg = gr.Textbox(placeholder="Type your message here...") msg.submit(chat, inputs=[msg, chatbot], outputs=[chatbot, chatbot]) with gr.Tab("Interpreter"): gr.Markdown("### 🖥️ Test Your Code") code_input = gr.Code(language="python") run_button = gr.Button("Run Code") code_output = gr.Textbox(label="Output") run_button.click(execute_code, inputs=code_input, outputs=code_output) with gr.Tab("Logs"): gr.Markdown("### 📜 Logs") log_output = gr.Textbox(label="Logs", lines=10, interactive=False) # Launch the Gradio app demo.launch()