FalconBot / chatbot.py
imSleepy's picture
added commets
e9a9ef1 verified
from transformers import T5Tokenizer, T5ForConditionalGeneration
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone
device = 'cpu'
# Calling the pinecone api
pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')
# Connect to the Pinecone index for querying and storing vectors
index_name = 'abstractive-question-answering'
index = pc.Index(index_name)
# Load the retriever model for sentence embeddings and the T5 model for text generation
def load_models():
print("Loading models...")
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
tokenizer = T5Tokenizer.from_pretrained('t5-small')
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
return retriever, generator, tokenizer
print("Done loading models")
retriever, generator, tokenizer = load_models()
def process_query(query):
print("Processing...")
# Encode the query into a vector for semantic search using SentenceTransformer
xq = retriever.encode([query]).tolist()
# Query the Pinecone index for the most similar vector to the query
xc = index.query(vector=xq, top_k=1, include_metadata=True)
print("Pinecone response:", xc)
# Concatenates the original question with the context extracted from the matched metadata
if 'matches' in xc and isinstance(xc['matches'], list):
context = [m['metadata']['Output'] for m in xc['matches']]
context_str = " ".join(context)
formatted_query = f"answer the question: {query} context: {context_str}"
# If the context is longer than 5 lines, return the context extracted from Pinecone directly
output_text = context_str
if len(output_text.splitlines()) > 5:
return output_text
# If none, then it will return that it was not covered in the student manual
if output_text.lower() == "none":
return "The topic is not covered in the student manual."
# Tokenizes the formatted query
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
# Generates an answer using the t5 model
ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
# Decodes the answer to make it readable for the user
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
# If it has this words, it will just paste the output from the extracted meta-data output from pinecone
nli_keywords = ['not_equivalent', 'not_entailment', 'entailment', 'neutral', 'not_enquiry']
if any(keyword in answer.lower() for keyword in nli_keywords):
return context_str
# returns the answer
return answer