changed to small in tokenization and num_beams=2 now
Browse files- chatbot.py +2 -2
chatbot.py
CHANGED
@@ -21,7 +21,7 @@ def load_models():
|
|
21 |
print("Loading models...")
|
22 |
|
23 |
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
|
24 |
-
tokenizer = T5Tokenizer.from_pretrained('t5-
|
25 |
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
|
26 |
|
27 |
return retriever, generator, tokenizer
|
@@ -57,7 +57,7 @@ def predict(query: QueryInput):
|
|
57 |
return {"response": "The topic is not covered in the student manual."}
|
58 |
|
59 |
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
|
60 |
-
ids = generator.generate(inputs, num_beams=
|
61 |
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
62 |
|
63 |
return {"response": answer}
|
|
|
21 |
print("Loading models...")
|
22 |
|
23 |
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
|
24 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
25 |
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
|
26 |
|
27 |
return retriever, generator, tokenizer
|
|
|
57 |
return {"response": "The topic is not covered in the student manual."}
|
58 |
|
59 |
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
|
60 |
+
ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
|
61 |
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
62 |
|
63 |
return {"response": answer}
|