imSleepy commited on
Commit
728e599
·
verified ·
1 Parent(s): 7b42316

edited again where it will just paste the output

Browse files
Files changed (1) hide show
  1. chatbot.py +4 -10
chatbot.py CHANGED
@@ -2,12 +2,10 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration
2
  from sentence_transformers import SentenceTransformer
3
  from pinecone import Pinecone
4
 
5
- device = 'cpu'
6
 
7
- # Initialize Pinecone instance
8
  pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')
9
 
10
- # Check if the index exists; if not, create it
11
  index_name = 'abstractive-question-answering'
12
  index = pc.Index(index_name)
13
 
@@ -23,14 +21,11 @@ def load_models():
23
  retriever, generator, tokenizer = load_models()
24
 
25
  def process_query(query):
26
- # Query Pinecone
27
  xq = retriever.encode([query]).tolist()
28
  xc = index.query(vector=xq, top_k=1, include_metadata=True)
29
 
30
- # Print the response to check the structure
31
  print("Pinecone response:", xc)
32
 
33
- # Check if 'matches' exists and is a list
34
  if 'matches' in xc and isinstance(xc['matches'], list):
35
  context = [m['metadata']['Output'] for m in xc['matches']]
36
  context_str = " ".join(context)
@@ -47,11 +42,10 @@ def process_query(query):
47
  inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
48
  ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
49
  answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
50
-
51
- nli_keywords = ['not_equivalent', 'not_entailment', 'entailment', 'neutral']
52
 
53
- # If any of the keywords are found in the answer, return the fallback message
 
54
  if any(keyword in answer.lower() for keyword in nli_keywords):
55
- return "Klasmeyt, can you elaborate your question?"
56
 
57
  return answer
 
2
  from sentence_transformers import SentenceTransformer
3
  from pinecone import Pinecone
4
 
5
+ device = 'cpu'
6
 
 
7
  pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')
8
 
 
9
  index_name = 'abstractive-question-answering'
10
  index = pc.Index(index_name)
11
 
 
21
  retriever, generator, tokenizer = load_models()
22
 
23
  def process_query(query):
 
24
  xq = retriever.encode([query]).tolist()
25
  xc = index.query(vector=xq, top_k=1, include_metadata=True)
26
 
 
27
  print("Pinecone response:", xc)
28
 
 
29
  if 'matches' in xc and isinstance(xc['matches'], list):
30
  context = [m['metadata']['Output'] for m in xc['matches']]
31
  context_str = " ".join(context)
 
42
  inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
43
  ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
44
  answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
 
 
45
 
46
+ nli_keywords = ['not_equivalent', 'not_entailment', 'entailment', 'neutral', 'not_enquiry']
47
+
48
  if any(keyword in answer.lower() for keyword in nli_keywords):
49
+ return context_str
50
 
51
  return answer