Uploaded chatbot.py
Browse files- chatbot.py +55 -0
chatbot.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
from pinecone import Pinecone
|
4 |
+
|
5 |
+
device = 'cpu'
|
6 |
+
|
7 |
+
# Initialize Pinecone instance
|
8 |
+
pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')
|
9 |
+
|
10 |
+
# Check if the index exists; if not, create it
|
11 |
+
index_name = 'abstractive-question-answering'
|
12 |
+
index = pc.Index(index_name)
|
13 |
+
|
14 |
+
def load_models():
|
15 |
+
print("Loading models...")
|
16 |
+
|
17 |
+
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
|
18 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
19 |
+
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
|
20 |
+
|
21 |
+
return retriever, generator, tokenizer
|
22 |
+
|
23 |
+
retriever, generator, tokenizer = load_models()
|
24 |
+
|
25 |
+
def process_query(query):
|
26 |
+
# Query Pinecone
|
27 |
+
xq = retriever.encode([query]).tolist()
|
28 |
+
xc = index.query(vector=xq, top_k=1, include_metadata=True)
|
29 |
+
|
30 |
+
# Print the response to check the structure
|
31 |
+
print("Pinecone response:", xc)
|
32 |
+
|
33 |
+
# Check if 'matches' exists and is a list
|
34 |
+
if 'matches' in xc and isinstance(xc['matches'], list):
|
35 |
+
context = [m['metadata']['Output'] for m in xc['matches']]
|
36 |
+
context_str = " ".join(context)
|
37 |
+
formatted_query = f"answer the question: {query} context: {context_str}"
|
38 |
+
else:
|
39 |
+
# Handle the case where 'matches' isn't found or isn't in the expected format
|
40 |
+
context_str = ""
|
41 |
+
formatted_query = f"answer the question: {query} context: {context_str}"
|
42 |
+
|
43 |
+
# Generate answer using T5 model
|
44 |
+
output_text = context_str
|
45 |
+
if len(output_text.splitlines()) > 5:
|
46 |
+
return output_text
|
47 |
+
|
48 |
+
if output_text.lower() == "none":
|
49 |
+
return "The topic is not covered in the student manual."
|
50 |
+
|
51 |
+
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
|
52 |
+
ids = generator.generate(inputs, num_beams=4, min_length=10, max_length=60, repetition_penalty=1.2)
|
53 |
+
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
54 |
+
|
55 |
+
return answer
|