from transformers import T5Tokenizer, T5ForConditionalGeneration from sentence_transformers import SentenceTransformer from pinecone import Pinecone device = 'cpu' # Initialize Pinecone instance pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5') # Check if the index exists; if not, create it index_name = 'abstractive-question-answering' index = pc.Index(index_name) def load_models(): print("Loading models...") retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base") tokenizer = T5Tokenizer.from_pretrained('t5-base') generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device) return retriever, generator, tokenizer retriever, generator, tokenizer = load_models() def process_query(query): # Query Pinecone xq = retriever.encode([query]).tolist() xc = index.query(vector=xq, top_k=1, include_metadata=True) # Print the response to check the structure print("Pinecone response:", xc) # Check if 'matches' exists and is a list if 'matches' in xc and isinstance(xc['matches'], list): context = [m['metadata']['Output'] for m in xc['matches']] context_str = " ".join(context) formatted_query = f"answer the question: {query} context: {context_str}" else: # Handle the case where 'matches' isn't found or isn't in the expected format context_str = "" formatted_query = f"answer the question: {query} context: {context_str}" # Generate answer using T5 model output_text = context_str if len(output_text.splitlines()) > 5: return output_text if output_text.lower() == "none": return "The topic is not covered in the student manual." inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device) ids = generator.generate(inputs, num_beams=4, min_length=10, max_length=60, repetition_penalty=1.2) answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) return answer