import gradio as gr from iman.sad_tfpy10 import * import torch from transformers import AutoProcessor, AutoModelForCTC processor = AutoProcessor.from_pretrained("Akashpb13/Central_kurdish_xlsr") model = AutoModelForCTC.from_pretrained("Akashpb13/Central_kurdish_xlsr") import soundfile as sf css = """ textarea { direction: rtl; text-align: right; font-family: Calibri, sans-serif; font-size: 16px;} """ seg = Segmenter(ffmpeg_path="ffmpeg",model_path="keras_speech_music_noise_cnn.hdf5" , device="cpu",vad_type="vad") def process_segment(args): segment, wav = args start, stop = segment # pp = converter((start, stop)) pp = wav[int(start*16000) : int(stop*16000)] input_values =processor(pp, sampling_rate=16000 , return_tensors="pt").input_values with torch.no_grad(): logits=model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids)[0] return start, stop, transcription def pcm_to_flac(pcm_data, sample_rate=16000): buffer = io.BytesIO() sf.write(buffer, pcm_data, sample_rate, format='FLAC') flac_data = buffer.getvalue() return flac_data def transcribe_audio(audio_file): text="" isig,wav = seg(audio_file) isig = filter_output(isig , max_silence=0.5 ,ignore_small_speech_segments=0.1 , max_speech_len=15 ,split_speech_bigger_than=20) isig = [(a,b) for x,a,b,_,_ in isig] print(isig) results=[] for segment in isig: results.append (process_segment((segment, wav))) for start, stop, tr_beamsearch_lm in results: try: text += ' ' + tr_beamsearch_lm + '\r\n' print(start) print(stop) print(text) except: pass return text # Define the Gradio interface interface = gr.Interface( fn=transcribe_audio, inputs=gr.Audio(type="filepath"), outputs=gr.Textbox(label="Transcription", elem_id="output-text",interactive=True), title="Soorani Audio Transcription", description="Upload an audio file or record audio to get the transcription.", css=css ) # Launch the Gradio app interface.launch()