Spaces:
Sleeping
Sleeping
Vivien Chappelier
commited on
Commit
·
464ec84
1
Parent(s):
fbe5687
use packaged VAEs
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import numpy as np
|
|
7 |
|
8 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
9 |
|
10 |
-
from diffusers import DiffusionPipeline
|
11 |
import torchvision.transforms as transforms
|
12 |
|
13 |
from copy import deepcopy
|
@@ -26,42 +26,35 @@ class BZHStableSignatureDemo(object):
|
|
26 |
|
27 |
def __init__(self, *args, **kwargs):
|
28 |
super().__init__(*args, **kwargs)
|
|
|
29 |
self.pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
for name,
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
("extreme", "models/checkpoint_000.pth.1500000")):
|
43 |
-
sd2 = torch.load(patched_decoder_ckpt)['ldm_decoder']
|
44 |
-
msg = self.pipe.vae.load_state_dict(sd2, strict=False)
|
45 |
-
print(f"loaded LDM decoder state_dict with message\n{msg}")
|
46 |
-
print("you should check that the decoder keys are correctly matched")
|
47 |
-
decoders[name] = sd2
|
48 |
self.decoders = decoders
|
49 |
|
50 |
def generate(self, mode, seed, prompt):
|
51 |
generator = torch.Generator(device=device)
|
52 |
-
#if seed:
|
53 |
torch.manual_seed(seed)
|
54 |
|
55 |
-
# load the patched VAE
|
56 |
-
|
57 |
-
self.pipe.vae
|
58 |
|
59 |
output = self.pipe(prompt, num_inference_steps=4, guidance_scale=0.0, output_type="pil")
|
60 |
-
return output.images[0]
|
61 |
|
62 |
def attack_detect(self, img, jpeg_compression, downscale, crop, saturation):
|
63 |
|
64 |
-
#img = img_edit["composite"]
|
65 |
img = img.convert("RGB")
|
66 |
|
67 |
# attack
|
@@ -69,6 +62,7 @@ class BZHStableSignatureDemo(object):
|
|
69 |
size = img.size
|
70 |
size = (int(size[0] / downscale), int(size[1] / downscale))
|
71 |
img = img.resize(size, Image.Resampling.LANCZOS)
|
|
|
72 |
if crop != 0:
|
73 |
width, height = img.size
|
74 |
area = width * height
|
@@ -108,17 +102,15 @@ class BZHStableSignatureDemo(object):
|
|
108 |
|
109 |
mf.seek(0)
|
110 |
img0 = Image.open(mf) # reload to show JPEG attack
|
111 |
-
|
112 |
result = "No watermark detected."
|
113 |
-
chances = int(1 / pvalue + 1)
|
114 |
rpv = 10**int(math.log10(pvalue))
|
115 |
if pvalue < 1e-3:
|
116 |
-
result = "Watermark detected with low confidence (p-value<%.0e)" % rpv
|
117 |
if pvalue < 1e-9:
|
118 |
-
result = "Watermark detected with high confidence (p-value<%.0e)" % rpv
|
119 |
return (img0, result)
|
120 |
|
121 |
-
|
122 |
def interface():
|
123 |
prompt = "sailing ship in storm by Rembrandt"
|
124 |
|
|
|
7 |
|
8 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
9 |
|
10 |
+
from diffusers import DiffusionPipeline, AutoencoderKL
|
11 |
import torchvision.transforms as transforms
|
12 |
|
13 |
from copy import deepcopy
|
|
|
26 |
|
27 |
def __init__(self, *args, **kwargs):
|
28 |
super().__init__(*args, **kwargs)
|
29 |
+
|
30 |
self.pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
31 |
+
|
32 |
+
# disable invisible-watermark
|
33 |
+
self.pipe.watermark = None
|
34 |
+
|
35 |
+
# save the original VAE
|
36 |
+
decoders = OrderedDict([("no watermark", self.pipe.vae)])
|
37 |
+
|
38 |
+
# load the patched VAEs
|
39 |
+
for name in ("weak", "medium", "strong", "extreme"):
|
40 |
+
vae = AutoencoderKL.from_pretrained(f"imatag/stable-signature-bzh-sdxl-vae-{name}", torch_dtype=torch.float16).to("cuda")
|
41 |
+
decoders[name] = vae
|
42 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
self.decoders = decoders
|
44 |
|
45 |
def generate(self, mode, seed, prompt):
|
46 |
generator = torch.Generator(device=device)
|
|
|
47 |
torch.manual_seed(seed)
|
48 |
|
49 |
+
# load the patched VAE
|
50 |
+
vae = self.decoders[mode]
|
51 |
+
self.pipe.vae = vae
|
52 |
|
53 |
output = self.pipe(prompt, num_inference_steps=4, guidance_scale=0.0, output_type="pil")
|
54 |
+
return output.images[0]
|
55 |
|
56 |
def attack_detect(self, img, jpeg_compression, downscale, crop, saturation):
|
57 |
|
|
|
58 |
img = img.convert("RGB")
|
59 |
|
60 |
# attack
|
|
|
62 |
size = img.size
|
63 |
size = (int(size[0] / downscale), int(size[1] / downscale))
|
64 |
img = img.resize(size, Image.Resampling.LANCZOS)
|
65 |
+
|
66 |
if crop != 0:
|
67 |
width, height = img.size
|
68 |
area = width * height
|
|
|
102 |
|
103 |
mf.seek(0)
|
104 |
img0 = Image.open(mf) # reload to show JPEG attack
|
105 |
+
|
106 |
result = "No watermark detected."
|
|
|
107 |
rpv = 10**int(math.log10(pvalue))
|
108 |
if pvalue < 1e-3:
|
109 |
+
result = "Watermark detected with low confidence (p-value<%.0e)" % rpv
|
110 |
if pvalue < 1e-9:
|
111 |
+
result = "Watermark detected with high confidence (p-value<%.0e)" % rpv
|
112 |
return (img0, result)
|
113 |
|
|
|
114 |
def interface():
|
115 |
prompt = "sailing ship in storm by Rembrandt"
|
116 |
|