Spaces:
Sleeping
Sleeping
Vivien Chappelier
commited on
Commit
·
b2cfd5f
1
Parent(s):
73c438e
use new proxy model
Browse files- app.py +10 -4
- detector_calibration.safetensors +3 -0
app.py
CHANGED
@@ -7,9 +7,11 @@ import numpy as np
|
|
7 |
|
8 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
9 |
|
10 |
-
from transformers import
|
11 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
12 |
import torchvision.transforms as transforms
|
|
|
|
|
13 |
|
14 |
from copy import deepcopy
|
15 |
from collections import OrderedDict
|
@@ -45,8 +47,10 @@ class BZHStableSignatureDemo(object):
|
|
45 |
|
46 |
# load the proxy detector
|
47 |
self.detector_image_processor = BlipImageProcessor.from_pretrained("imatag/stable-signature-bzh-detector-resnet18")
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
def generate(self, mode, seed, prompt):
|
52 |
generator = torch.Generator(device=device)
|
@@ -132,7 +136,9 @@ class BZHStableSignatureDemo(object):
|
|
132 |
inputs = self.detector_image_processor(img, return_tensors="pt")
|
133 |
|
134 |
with torch.no_grad():
|
135 |
-
|
|
|
|
|
136 |
|
137 |
return pvalue
|
138 |
|
|
|
7 |
|
8 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
9 |
|
10 |
+
from transformers import AutoModelForImageClassification, BlipImageProcessor
|
11 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
12 |
import torchvision.transforms as transforms
|
13 |
+
from huggingface_hub import hf_hub_download
|
14 |
+
from safetensors import safe_open
|
15 |
|
16 |
from copy import deepcopy
|
17 |
from collections import OrderedDict
|
|
|
47 |
|
48 |
# load the proxy detector
|
49 |
self.detector_image_processor = BlipImageProcessor.from_pretrained("imatag/stable-signature-bzh-detector-resnet18")
|
50 |
+
self.detector_model = AutoModelForImageClassification.from_pretrained("imatag/stable-signature-bzh-detector-resnet18")
|
51 |
+
calibration = hf_hub_download("imatag/stable-signature-bzh-detector-resnet18", filename="calibration.safetensors")
|
52 |
+
with safe_open(calibration, framework="pt") as f:
|
53 |
+
self.calibration_logits = f.get_tensor("logits")
|
54 |
|
55 |
def generate(self, mode, seed, prompt):
|
56 |
generator = torch.Generator(device=device)
|
|
|
136 |
inputs = self.detector_image_processor(img, return_tensors="pt")
|
137 |
|
138 |
with torch.no_grad():
|
139 |
+
logit = self.detector_model(**inputs).logits[...,0]
|
140 |
+
pvalue = (1 + torch.searchsorted(self.calibration_logits, logit)) / self.calibration_logits.shape[0]
|
141 |
+
pvalue = pvalue.item()
|
142 |
|
143 |
return pvalue
|
144 |
|
detector_calibration.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5146e98a98a65559fbdb8ccf8cfd9a18982e09e13aa16f3005a640639ca5b298
|
3 |
+
size 1999942
|