Shadhil's picture
Upload 425 files
1a79cb6 verified
import torch
from .base_model import BaseModel
from . import model_utils
class GANimationModel(BaseModel):
"""docstring for GANimationModel"""
def __init__(self):
super(GANimationModel, self).__init__()
self.name = "GANimation"
def initialize(self):
# super(GANimationModel, self).initialize(opt)
self.is_train = False
self.models_name = []
self.net_gen = model_utils.define_splitG(3, 17, 64, use_dropout=False,
norm='instance', init_type='normal', init_gain=0.02, gpu_ids=[0])
self.models_name.append('gen')
self.device = 'cuda'
# if self.is_train:
# self.net_dis = model_utils.define_splitD(3, 17, self.opt.final_size, self.opt.ndf,
# norm=self.opt.norm, init_type=self.opt.init_type, init_gain=self.opt.init_gain, gpu_ids=self.gpu_ids)
# self.models_name.append('dis')
# if self.opt.load_epoch > 0:
self.load_ckpt('30')
def setup(self):
super(GANimationModel, self).setup()
if self.is_train:
# setup optimizer
self.optim_gen = torch.optim.Adam(self.net_gen.parameters(),
lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
self.optims.append(self.optim_gen)
self.optim_dis = torch.optim.Adam(self.net_dis.parameters(),
lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
self.optims.append(self.optim_dis)
# setup schedulers
self.schedulers = [model_utils.get_scheduler(optim, self.opt) for optim in self.optims]
def feed_batch(self, batch):
self.src_img = batch['src_img'].to(self.device)
self.tar_aus = batch['tar_aus'].type(torch.FloatTensor).to(self.device)
if self.is_train:
self.src_aus = batch['src_aus'].type(torch.FloatTensor).to(self.device)
self.tar_img = batch['tar_img'].to(self.device)
def forward(self):
# generate fake image
self.color_mask ,self.aus_mask, self.embed = self.net_gen(self.src_img, self.tar_aus)
self.fake_img = self.aus_mask * self.src_img + (1 - self.aus_mask) * self.color_mask
# reconstruct real image
if self.is_train:
self.rec_color_mask, self.rec_aus_mask, self.rec_embed = self.net_gen(self.fake_img, self.src_aus)
self.rec_real_img = self.rec_aus_mask * self.fake_img + (1 - self.rec_aus_mask) * self.rec_color_mask
def backward_dis(self):
# real image
pred_real, self.pred_real_aus = self.net_dis(self.src_img)
self.loss_dis_real = self.criterionGAN(pred_real, True)
self.loss_dis_real_aus = self.criterionMSE(self.pred_real_aus, self.src_aus)
# fake image, detach to stop backward to generator
pred_fake, _ = self.net_dis(self.fake_img.detach())
self.loss_dis_fake = self.criterionGAN(pred_fake, False)
# combine dis loss
self.loss_dis = self.opt.lambda_dis * (self.loss_dis_fake + self.loss_dis_real) \
+ self.opt.lambda_aus * self.loss_dis_real_aus
if self.opt.gan_type == 'wgan-gp':
self.loss_dis_gp = self.gradient_penalty(self.src_img, self.fake_img)
self.loss_dis = self.loss_dis + self.opt.lambda_wgan_gp * self.loss_dis_gp
# backward discriminator loss
self.loss_dis.backward()
def backward_gen(self):
# original to target domain, should fake the discriminator
pred_fake, self.pred_fake_aus = self.net_dis(self.fake_img)
self.loss_gen_GAN = self.criterionGAN(pred_fake, True)
self.loss_gen_fake_aus = self.criterionMSE(self.pred_fake_aus, self.tar_aus)
# target to original domain reconstruct, identity loss
self.loss_gen_rec = self.criterionL1(self.rec_real_img, self.src_img)
# constrain on AUs mask
self.loss_gen_mask_real_aus = torch.mean(self.aus_mask)
self.loss_gen_mask_fake_aus = torch.mean(self.rec_aus_mask)
self.loss_gen_smooth_real_aus = self.criterionTV(self.aus_mask)
self.loss_gen_smooth_fake_aus = self.criterionTV(self.rec_aus_mask)
# combine and backward G loss
self.loss_gen = self.opt.lambda_dis * self.loss_gen_GAN \
+ self.opt.lambda_aus * self.loss_gen_fake_aus \
+ self.opt.lambda_rec * self.loss_gen_rec \
+ self.opt.lambda_mask * (self.loss_gen_mask_real_aus + self.loss_gen_mask_fake_aus) \
+ self.opt.lambda_tv * (self.loss_gen_smooth_real_aus + self.loss_gen_smooth_fake_aus)
self.loss_gen.backward()
def optimize_paras(self, train_gen):
self.forward()
# update discriminator
self.set_requires_grad(self.net_dis, True)
self.optim_dis.zero_grad()
self.backward_dis()
self.optim_dis.step()
# update G if needed
if train_gen:
self.set_requires_grad(self.net_dis, False)
self.optim_gen.zero_grad()
self.backward_gen()
self.optim_gen.step()
def save_ckpt(self, epoch):
# save the specific networks
save_models_name = ['gen', 'dis']
return super(GANimationModel, self).save_ckpt(epoch, save_models_name)
def load_ckpt(self, epoch):
# load the specific part of networks
load_models_name = ['gen']
if self.is_train:
load_models_name.extend(['dis'])
return super(GANimationModel, self).load_ckpt(epoch, load_models_name)
def clean_ckpt(self, epoch):
# load the specific part of networks
load_models_name = ['gen', 'dis']
return super(GANimationModel, self).clean_ckpt(epoch, load_models_name)
def get_latest_losses(self):
get_losses_name = ['dis_fake', 'dis_real', 'dis_real_aus', 'gen_rec']
return super(GANimationModel, self).get_latest_losses(get_losses_name)
def get_latest_visuals(self):
visuals_name = ['src_img', 'tar_img', 'color_mask', 'aus_mask', 'fake_img']
if self.is_train:
visuals_name.extend(['rec_color_mask', 'rec_aus_mask', 'rec_real_img'])
return super(GANimationModel, self).get_latest_visuals(visuals_name)